The Polymorphic Locus rs780093 of the GCKR Gene is Associated with the Risk of Infertility in Endometriosis
- Авторлар: Ponomareva T.A.1,2, Altukhova O.B.1,2, Ponomarenko I.V.2, Churnosov M.I.2
-
Мекемелер:
- Belgorod National Research University
- St. Ioasaph Belgorod Regional Clinical Hospital
- Шығарылым: Том 61, № 8 (2025)
- Беттер: 87-99
- Бөлім: ГЕНЕТИКА ЧЕЛОВЕКА
- URL: https://journals.rcsi.science/0016-6758/article/view/332384
- DOI: https://doi.org/10.31857/S0016675825080081
- ID: 332384
Дәйексөз келтіру
Аннотация
In this study, we examine the associations of 9 polymorphic loci associated with the level of sex hormone-binding globulin (SHBG) with the development of infertility in women with genital endometriosis. The study was conducted on a sample of 395 patients with genital endometriosis (132 women with genital endometriosis and concomitant infertility, 263 women with genital endometriosis without infertility), natives of the Central Black Earth Region of Russia. Genotyping of nine polymorphic loci associated with SHBG levels according to previously conducted genome-wide association studies (GWAS) was performed: rs12150660 SHBG, rs10454142 PPP1R21, rs780093 GCKR, rs17496332 PRMT6, rs3779195 BAIAP2L1, rs440837 ZBTB10, rs7910927 JMJD1C, rs4149056 SLCO1B1, rs8023580 NR2F2. It was found that the genotype TT rs780093 GCKR is associated with a low risk of infertility in endometriosis (OR = 0.43; p = 0.017; pperm = 0.019). It has been identified that inter-locus interactions rs8023580 NR2F2 – rs10454142 PPP1R21 – rs17496332 PRMT6 are significantly associated with the risk of infertility in genital endometriosis (WH Wald criterion = 19.15, pperm ≤ 0.001). Combinations of genotypes rs8023580-TT NR2F2 – rs10454142-TT PPP1R21 – rs17496332-AA PRMT6 (beta = 0.71, p = 0.042), rs8023580-TC NR2F2 – rs10454142-CC PPP1R21 – rs17496332-AA PRMT6 (beta = 1.55, p = 0.025), rs8023580-TC NR2F2 – rs10454142-TT PPP1R21 – rs17496332-AG PRMT6 (beta = 1.92, p = 0.027) are risk factors for infertility in genital endometriosis. Thus, the polymorphic locus rs780093 GCKR and the inter-locus interactions rs8023580 NR2F2 – rs10454142 PPP1R21 – rs17496332 PRMT6 are associated with the risk of infertility in endometriosis.
Авторлар туралы
T. Ponomareva
Belgorod National Research University; St. Ioasaph Belgorod Regional Clinical Hospital
Хат алмасуға жауапты Автор.
Email: 635684@bsuedu.ru
Belgorod, 308007 Russia; Belgorod, 308015 Russia
O. Altukhova
Belgorod National Research University; St. Ioasaph Belgorod Regional Clinical Hospital
Email: 635684@bsuedu.ru
Belgorod, 308007 Russia; Belgorod, 308015 Russia
I. Ponomarenko
St. Ioasaph Belgorod Regional Clinical Hospital
Email: 635684@bsuedu.ru
Belgorod, 308015 Russia
M. Churnosov
St. Ioasaph Belgorod Regional Clinical Hospital
Email: 635684@bsuedu.ru
Belgorod, 308015 Russia
Әдебиет тізімі
- Crump J., Suker A., White L. Endometriosis: A review of recent evidence and guidelines // Aust. J. Gen. Pract. 2024. V. 53. № 1–2. Р. 11–18. https://doi.org/10.31128/AJGP/04-23-6805
- Пономаренко И.В., Полоников А.В., Чурносов М.И. Молекулярные механизмы и факторы риска развития эндометриоза // Акушерство и гинекология. 2019. Т. 3. С. 26–31.
- Koninckx P.R., Fernandes R., Ussia A. et al. Pathogenesis based diagnosis and treatment of endometriosis // Front. Endocrinol. (Lausanne). 2021. V. 12. https://doi.org/10.3389/fendo.2021.745548
- Wang P.H., Yang S.T., Chang W.H. et al. Endometriosis: Part I. Basic concept // Taiwanese J. Obstet. Gynecol. 2022. V. 61. № 6. Р. 927–934. https://doi.org/10.1016/j.tjog.2022.08.002
- Smolarz B., Szyłło K., Romanowicz H. Endometriosis: epidemiology, classification, pathogenesis, treatment and genetics (Review of Literature) // Int. J. Mol. Sci. 2021. V. 22. № 19. https://doi.org/10.3390/ijms221910554
- Filip L., Duică F., Prădatu A. et al. Endometriosis associated infertility: A critical review and analysis on etiopathogenesis and therapeutic approaches // Medicina (Kaunas, Lithuania). 2020. V. 56. № 9. Р. 460. https://doi.org/10.3390/medicina56090460
- Bouic P.J. Endometriosis and infertility: The hidden link between endometritis, hormonal imbalances and immune dysfunctions preventing implantation! // JBRA Assisted Reproduction. 2023. V. 27. № 2. Р. 144–146. https://doi.org/10.5935/1518-0557.20230015
- Радзинский В.Е., Алтухова О.Б. Молекулярно-генетические детерминанты бесплодия при генитальном эндометриозе // Науч. результаты биомед. исследований. 2018. Т. 4. № 3. С. 28–37.
- Головченко И.О. Генетические детерминанты уровня половых гормонов у больных эндометриозом // Науч. результаты биомед. исследований. 2023. Т. 9. № 1. С. 5–21.
- Пасенов К.Н. Особенности ассоциаций SHBG-связанных генов с раком молочной железы у женщин в зависимости от наличия наследственной отягощенности и мутаций в генах BRCA1/CHEK2 // Науч. результаты биомед. исследований. 2024. Т. 10. № 1. С. 69–88. https://doi.org/10.18413/2658-6533-2024-10-1-0-4
- Rahmioglu N., Mortlock S., Ghiasi M. et al. The genetic basis of endometriosis and comorbidity with other pain and inflammatory conditions // Nat. Genet. 2023. V. 55. № 3. Р. 423–436. https://doi.org/10.1038/s41588-023-01323-z
- Zondervan K.T., Becker C.M., Missmer S.A. Endometriosis // New England J. Med. 2020. V. 382. № 13. Р. 1244–1256. https://doi.org/10.1056/NEJMra1810764
- McGrath I.M., Montgomery G.W., Mortlock S. Insights from Mendelian randomization and genetic correlation analyses into the relationship between endometriosis and its comorbidities // Hum. Reprod. Update. 2023. V. 29. № 5. Р. 655–674. https://doi.org/10.1093/humupd/dmad009
- Christofolini D.M., Mafra F.A., Catto M.C. et al. New candidate genes associated to endometriosis // Gynecol. Endocrinol. 2019. V. 35. № 1. Р. 62–65. https://doi.org/10.1080/09513590.2018.1499090
- Андреев А.Е., Клейменова Т.С., Дробинцева А.О. и др. Сигнальные молекулы, вовлеченные в образование новых нервных окончаний при эндометриозе (обзор) // Науч. результаты биомед. исследований. 2019. Т. 5. № 1. С. 94–107.
- Narinx N., David K., Walravens J. et al. Role of sex hormone-binding globulin in the free hormone hypothesis and the relevance of free testosterone in androgen physiology // Cellular and Mol. Life Sci.: CMLS. 2022. V. 79. № 11. Р. 543. https://doi.org/10.1007/s00018-022-04562-1
- Simons P.I.H.G., Valkenburg O., Stehouwer C.D.A. et al. Sex hormone-binding globulin: Biomarker and hepatokine? // Trends. Endocrinol. Metab.: TEM. 2021. V. 32. № 8. Р. 544–553. https://doi.org/10.1016/j.tem.2021.05.002
- Coviello A.D., Haring R., Wellons M. et al. A genome-wide association meta-analysis of circulating sex hormone-binding globulin reveals multiple loci implicated in sex steroid hormone regulation // PLoS Genet. 2012. V. 8. № 7. https://doi.org/10.1371/journal.pgen.1002805
- Harrison S., Davies N.M., Howe L.D. et al. Testosterone and socioeconomic position: mendelian rando- mization in 306,248 men and women in UK biobank // Sci. Advances. 2021. V. 7. № 31. https://doi.org/10.1126/sciadv.abf8257
- Reshetnikova Y., Churnosova M., Stepanov V. et al. Maternal age at menarche gene polymorphisms are associated with offspring birth weight // Life. 2023. V. 13. P. 1525. https://doi.org/10.3390/life13071525
- Reshetnikov E., Churnosova M., Reshetnikova Y. et al. Maternal age at menarche genes determines fetal growth restriction risk // Int. J. Mol. Sci. 2024. V. 25. № 5. Р. 2647. https://doi.org/10.3390/ijms25052647
- Abramova M., Churnosova M., Efremova O. et al. Effects of pre-pregnancy over-weight/obesity on the pattern of association of hypertension susceptibility genes with preeclampsia // Life. 2022. V. 12. P. 2018. https://doi.org/10.3390/life12122018
- Churnosov M., Abramova M., Reshetnikov E. et al. Polymorphisms of hypertension susceptibility genes as a risk factor of preeclampsia in the Caucasian population of central Russia // Placenta. 2022. V. 129. P. 51–61. https://doi.org/10.1016/j.placenta.2022.09.010.
- Novakov V., Novakova O., Churnosova M. et al. Intergenic interactions of SBNO1, NFAT5 and GLT8D1 determine the susceptibility to knee osteoarthritis among Europeans of Russia // Life. 2023. V. 13. P. 405. https://doi.org/10.3390/life13020405
- Pavlova N., Demin S., Churnosov M. et al. The modi- fying effect of obesity on the association of matrix metalloproteinase gene polymorphisms with breast cancer risk // Biomedicines. 2022. V. 10. P. 2617. https://doi.org/10.3390/biomedicines10102617
- Pavlova N., Demin S., Churnosov M. et al. Matrix metalloproteinase gene polymorphisms are associated with breast cancer in the Caucasian women of Russia // Int. J. Mol. Sci. 2022. V. 23. № 20. 10.3390/ijms232012638' target='_blank'>https://doi: 10.3390/ijms232012638
- Ivanova T., Churnosova M., Abramova M. et al. Sex- specific features of the correlation between GWAS- noticeable polymorphisms and hypertension in Europeans of Russia // Int. J. Mol. Sci. 2023. V. 24. P. 7799. https://doi.org/10.3390/ ijms24097799
- Ivanova T., Churnosova M., Abramova M. et al. Risk effects of rs1799945 polymorphism of the HFE gene and intergenic interactions of GWAS-significant loci for arterial hypertension in the Caucasian population of Central Russia // Int. J. Mol. Sci. 2023. V. 24. P. 8309. https://doi.org/10.3390/ijms24098309
- Ponomarenko I., Pasenov K., Churnosova M. et al. Obe- sity-dependent association of the rs10454142 PPP1R21 with breast cancer // Biomedicines. 2024. V. 12. № 4. P. 818. 10.3390/biomedicines12040818' target='_blank'>https://doi: 10.3390/biomedicines12040818
- Ponomarenko I., Pasenov K., Churnosova M. et al. Sex-hormone-binding globulin gene polymorphisms and breast cancer risk in Caucasian women of Russia // Int. J. Mol. Sci. 2024. V. 25. № 4. Р. 2182. 10.3390/ijms25042182' target='_blank'>https://doi: 10.3390/ijms25042182
- Novakov V., Novakova O., Churnosova M. et al. Polymorphism rs143384 GDF5 reduces the risk of knee osteoarthritis development in obese individuals and increases the disease risk in non-obese population // Arthroplasty. 2024. V. 6. № 1. P. 12. 10.1186/s42836-023-00229-9' target='_blank'>https://doi: 10.1186/s42836-023-00229-9
- Calle M.L., Urrea V., Malats N. et al. Mbmdr: An R package for exploring gene–gene interactions associated with binary or quantitative traits // Bioinformatics. 2010. V. 26. № 17. Р. 2198–2199. https://doi.org/10.1093/bioinformatics/btq352
- Kanai M., Akiyama M., Takahashi A. et al. Genetic analysis of quantitative traits in the Japanese population links cell types to complex human diseases // Nat. Genet. 2018. V. 50. № 3. Р. 390–400. https://doi.org/10.1038/s41588-018-0047-6
- Lee C.J., Lee J.Y., Han K. et al. Blood pressure levels and risks of dementia: A nationwide study of 4.5 million people // Hypertension. 2022. V. 79. № 1. Р. 218–229. https://doi.org/10.1161/HYPERTENSIONAHA.121.17283
- Sinnott-Armstrong N., Tanigawa Y., Amar D. et al. Genetics of 35 blood and urine biomarkers in the UK biobank // Nat. Genet. 2021. V. 53. № 2. Р. 185–194. https://doi.org/10.1038/s41588-020-00757-z
- Olafsson S., Fridriksdottir R.H., Love T.J. et al. Cascade of care during the first 36 months of the treatment as prevention for hepatitis C (TraP HepC) programme in Iceland: A population-based study // Lancet Gastroenterol. Hepatol. 2021. V. 6. № 8. Р. 628–637. https://doi.org/10.1016/S2468-1253(21)00137-0
- Chen C.Y., Tian R., Ge T. et al. The impact of rare protein coding genetic variation on adult cognitive function // Nat. Genet. 2023. V. 55. № 6. Р. 927–938. https://doi.org/10.1038/s41588-023-01398-8
- Sakaue S., Kanai M., Tanigawa Y. et al. A cross- population atlas of genetic associations for 220 human phenotypes // Nat. Genet. 2021. V. 53. № 10. Р. 1415–1424. https://doi.org/10.1038/s41588-021-00931-x
- Pietzner M., Wheeler E., Carrasco-Zanini J. et al. Mapping the proteo-genomic convergence of human diseases // Sci. 2021. V. 374. № 6569. https://doi.org/10.1126/science.abj1541
- Leinonen J.T., Mars N., Lehtonen L.E. et al. Genetic analyses implicate complex links between adult testosterone levels and health and disease // Commun. Med. (Lond.). 2023. V. 3. № 1. Р. 4. https://doi.org/10.1038/s43856-022-00226-0
- Golovchenko I., Aizikovich B., Golovchenko O. et al. Sex hormone candidate gene polymorphisms are associated with endometriosis // Int. J. Mol. Sci. 2022. V. 23. № 22. Р. 13691. https://doi.org/10.3390/ijms232213691
- Ponomarenko M.S., Reshetnikov E.A., Churnoso- va M.M. et al. Comorbidity and syntropy of benign proliferative diseases of the female reproductive system: non-genetic, genetic, and epigenetic factors (review) // Res. Results in Biomedicine. 2023. V. 9. № 4. Р. 544–556. https://doi.org/10.18413/2658- 6533-2023-9-4-0-9
- Пономарева Т.А. Генетические варианты глобулина, связывающего половые гормоны, и гормональный профиль больных генитальным эндометриозом // Науч. результаты биомед. исследований. 2025. Т. 11. № 1. C. 75–90.
- Dinsdale N., Nepomnaschy P., Crespi B. The evolutionary biology of endometriosis // Evolution, Med. and Public Health. 2021. V. 9. № 1. Р. 174–191. https://doi.org/10.1093/emph/eoab008
- Crespi B. Variation among human populations in endometriosis and PCOS A test of the inverse comorbi- dity model // Evolution, Med. and Public Health. 2021. V. 9. № 1. Р. 295–310. https://doi.org/10.1093/emph/eoab029
- Zahedi A.S., Akbarzadeh M., Sedaghati-Khayat B. et al. GCKR common functional polymorphisms are associated with metabolic syndrome and its components: A 10-year retrospective cohort study in Iranian adults // Diabetol. Metab. Syndr. 2021. V. 13. № 1. Р. 20. https://doi.org/10.1186/s13098-021-00637-4
- Chavan S.U., Rathi P., Mandot A. Association of GCKR and MBOAT7 genetic polymorphisms with non-alcoholic fatty liver disease // Clin. and Exp. Hepatol. 2024. V. 10. № 1. Р. 39–46. https://doi.org/10.5114/ceh.2024.136326
- Ma Q., Wang L., Yang Y. et al. Association between lncRNA and GCKR gene in type 2 diabetes mellitus // Clin. Chim. Acta. 2020. V. 501. Р. 66–71. https://doi.org/10.1016/j.cca.2019.10.004
- Akbarzadeh M., Alipour N., Moheimani H. et al. Eva- luating machine learning-powered classi-fication algorithms which utilize variants in the GCKR gene to predict metabolic syndrome: Tehran cardio-metabolic genetics study // J. Transl. Med. 2022. V. 9. № 20. Р. 164. https://doi.org/10.1186/s12967-022-03349-z
- Frühbeck G., Fernández-Quintana B., Paniagua M. et al. FNDC4, a novel adipokine that reduces lipogenesis and promotes fat browning in human visceral adipocytes // Metabolism. 2020. V. l. № 108. https://doi.org/10.1016/j.metabol.2020.154261
- Marchiani S., Tamburrino L., McPherson N. et al. Editorial: The role of obesity and metabolic syndrome in couple infertility // Front. Endocrinol. (Lausanne). 2021. V. 10. № 12. https://doi.org/10.3389/fendo.2021.784716
- Wei H., Wang H., Ji Q. et al. NRBP1 is downregulated in breast cancer and NRBP1 overexpression inhibits cancer cell proliferation through Wnt/β-catenin signaling pathway // OncoTargets and Therapy. 2015. V. 8. P. 3721–3730. https://doi.org/10.2147/OTT.S89779
- Kilpeläinen T.O., Carli J.F., Skowronski A.A. et al. Genome-wide meta-analysis uncovers novel loci influencing circulating leptin levels // Nat. Commun. 2016. V. 1. № 7. https://doi.org/10.1038/ncomms10494
- Yaghootkar H., Zhang Y., Spracklen C.N. et al. Genetic studies of leptin concentrations implicate leptin in the regulation of early adiposity // Diabetes. 2020. V. 69. № 12. Р. 2806–2818. https://doi.org/10.2337/db20-0070
- Obradovic M., Sudar-Milovanovic E., Soskic S. et al. Leptin and obesity: role and clinical implication // Front. Endocrinol. (Lausanne). 2021. V. 12. https://doi.org/10.3389/fendo.2021.585887
- Perakakis N., Farr O.M., Mantzoros C.S. Leptin in leanness and obesity: JACC state-of-the-art review // J. Am. Coll. Cardiol. 2021. V. 77. № 6. Р. 745–760. https://doi.org/10.1016/j.jacc.2020.11.069
- Zhang Y., Chua S. Jr. Leptin function and regula- tion // Compr. Physiol. 2017. V. 8. № 1. Р. 351–369. https://doi.org/10.1002/cphy.c160041
- Childs G.V., Odle A.K., MacNicol M.C. et al. The importance of leptin to reproduction // Endocrinology. 2021. V. 162. № 2. https://doi.org/10.1210/endocr/bqaa204
Қосымша файлдар
