Polymorphism of Genes Encoding Selenoproteins in the Indigenous Population of Siberia: Adaptive Variant rs1133238-A of the SEPHS2 Gene
- Авторлар: Malyarchuk B.A.1, Pokhilyuk N.V.1, Litvinov A.N.1
-
Мекемелер:
- Institute of Biological Problems of the North, Far Eastern Branch of the Russian Academy of Sciences
- Шығарылым: Том 61, № 10 (2025)
- Беттер: 108-124
- Бөлім: ГЕНЕТИКА ЧЕЛОВЕКА
- URL: https://journals.rcsi.science/0016-6758/article/view/355175
- DOI: https://doi.org/10.7868/S3034510325100091
- ID: 355175
Дәйексөз келтіру
Аннотация
Негізгі сөздер
Авторлар туралы
B. Malyarchuk
Institute of Biological Problems of the North, Far Eastern Branch of the Russian Academy of Sciences
Email: malbor@mail.ru
Magadan, 685000 Russia
N. Pokhilyuk
Institute of Biological Problems of the North, Far Eastern Branch of the Russian Academy of SciencesMagadan, 685000 Russia
A. Litvinov
Institute of Biological Problems of the North, Far Eastern Branch of the Russian Academy of SciencesMagadan, 685000 Russia
Әдебиет тізімі
- Миних В.Б. Базовые аспекты метаболизма селена и биосинтез селенопротеинов в организме человека // Усп. биол. химии. 2022. Т. 62. С. 369–390.
- Ferreira R.R., Carvalho R.V., Coelho L.L. et al. Current understanding of human polymorphism in selenoprotein genes: А review of its significance as a risk biomarker // Int. J. Mol. Sci. 2024. V. 25. P. 1402. https://doi.org/10.3390/ijms25031402
- Köhrle J. The trace element selenium and the thyroid gland // Biochimie. 1999. V. 81. P. 527–533. https://doi.org/10.1016/s0300-9084(99)80105-9
- Köhrle J. Selenium, iodine and iron-essential trace elements for thyroid hormone synthesis and metabolism // Int. J. Mol. Sci. 2023. V. 24. https://doi.org/10.3390/ijms24043393
- Parajuli R.P., Goodrich J.M., Chan L.H.M. et al. Genetic polymorphisms are associated with exposure biomarkers for metals and persistent organic pollutants among Inuit from the Inuvialuit Settlement Region, Canada // Sci. Total Environ. 2018. V. 634. P. 569–578. https://doi.org/10.1016/j.scitotenv.2018.03.331
- Yao Y., Pei F., Kang P. Selenium, iodine, and the relation with Kashin-Beck disease // Nutrition. 2011. V. 27. P. 1095–1100. https://doi.org/10.1016/j.nut.2011.03.002
- White L., Romagne F., Muller E. et al. Genetic adaptation to levels of dietary selenium in recent human history // Mol. Biol. Evol. 2015. V. 32. P. 1507–1518. https://doi.org/10.1093/molbev/msv043
- Cornelis M.C., Fornage M., Foy M. et al. Genome-wide association study of selenium concentrations // Hum. Mol. Genet. 2015. V. 24. P. 1469–1477. https://doi.org/10.1093/hmg/ddu546
- Agamy O., Ben Zeev B., Lev D. et al. Mutations disrupting selenocysteine formation cause progressive cerebello-cerebral atrophy // Am. J. Hum. Genet. 2010. V. 87. P. 538–544. https://doi.org/10.1016/j.ajhg.2010.09.007
- Alfthan G., Xu G.L., Tan W.H. et al. Selenium supplementation of children in a selenium-deficient area in China: Blood selenium levels and glutathione pero- xidase activities // Biol. Trace Elem. Res. 2000. V. 73. P. 113–125. https://doi.org/10.1385/BTER:73:2:113
- Xiong Y.M., Zou X.Z., Chen Q. et al. Relationship between Gpx1 Pro198leu polymorphism and susceptibi- lity of Kashin-Beck disease // Value Health. 2015. V. 18. P. A638. https://doi.org/10.1016/j.jval.2015.09.2270
- Yu F.F., Sun L., Zhou G.Y. et al. Meta-analysis of association studies of selenoprotein gene polymorphism and Kashin-Beck disease: An updated systematic review // Biol. Trace Elem. Res. 2022. V. 200(2). Р. 543–550. https://doi.org/10.1007/s12011-021-02705-2
- Голубкина Н.А., Папазян Т.Т. Селен в питании. Растения, животные, человек. М.: «Печатный город», 2006. 250 с.
- Синдирева А.В., Эрдэнэцогт Э., Голубкина Н.А., Гурьев Н.Е. Интегральный подход к нормированию действия селена в системе почва–растение–животное для разработки научно-обоснованной профилактики микроэлементозов в регионах России и Монголии. Омск: Издательский центр КАН, 2024. 244 с.
- Побилат А.Е., Волошин Е.И. Особенности содержания селена в системе почва–растение (обзор) // Вестник КрасГАУ. 2020. № 11. С. 98–105. https://doi.org/10.36718/1819-4036-2020-11-98-105
- Зорина Д.Ю., Бацевич В.А. Микроэлементный статус коренного населения Арктики (чукчи и эскимосы) по результатам анализа волос // Вестник Москов. ун-та. Серия 23. Антропология. 2011. № 4. С. 105–111.
- Little M., Achouba A., Ayotte P., Lemire M. Emerging evidence on selenoneine and its public health relevance in coastal populations: A review and case study of dietary Se among Inuit populations in the Canadian Arctic // Nutr. Res. Rev. 2024. V. 37. P. 1–10. https://doi.org/10.1017/S0954422424000039
- Achouba A., Dumas P., Ouellet N. et al. Selenoneine is a major selenium species in beluga skin and red blood cells of Inuit from Nunavik // Chemosphere. 2019. V. 229. P. 549–558. https://doi.org/10.1016/j.chemosphere.2019.04.191
- Foster C.B., Aswath K., Chanock S.J. et al. Polymorphism analysis of six selenoprotein genes: Support for a selective sweep at the glutathione peroxidase 1 locus (3p21) in Asian populations // BMC Genet. 2006. V. 7. https://doi.org/10.1186/1471-2156-7-56
- Engelken J., Espadas G., Mancuso F.M. et al. Signatures of evolutionary adaptation in quantitative trait loci influencing trace element homeostasis in liver // Mol. Biol. Evol. 2016. V. 33. P. 738–754. https://doi.org/10.1093/molbev/msv267
- Kumar L., Chowdhari A., Sequeira J.J. et al. Genetic affinities and adaptation of the South-West coast populations of India // Genome Biol. Evol. 2023. V. 15. https://doi.org/10.1093/gbe/evad225
- Santesmasses D., Gladyshev V.N. Pathogenic variants in selenoproteins and selenocysteine biosynthesis machinery // Int. J. Mol. Sci. 2021. V. 22. https://doi: 10.3390/ijms222111593
- Cardona A., Pagani L., Antao T. et al. Genome-wide analysis of cold adaption in indigenous Siberian populations // PLoS One. 2014. V. 9. https://doi.org/10.1371/journal.pone.0098076
- Hallmark B., Karafet T.M., Hsieh P. et al. Geno- mic evidence of local adaptation to climate and diet in indigenous Siberians // Mol. Biol. Evol. 2019. V. 36. P. 315–327. https://doi.org/10.1093/molbev/msy211
- Kolesnikov N.A., Kharkov V.N., Zarubin A.A. et al. Signals of directed selection in the indigenous populations of Siberia // Russ. J. Genet. 2022. V. 58. P. 473–477. https://doi.org/10.1134/S102279542204007X
- Ермаков В.В. Концепция биогеохимических провинций А.П. Виноградова и ее развитие // Геохимия. 2017. № 10. С. 875–890. doi: 10.7868/S0016752517100041
- Pagani L., Lawson D.J., Jagoda E. et al. Genomic analyses inform on migration events during the peopling of Eurasia // Nature. 2016. V. 538. P. 238–242. https://doi.org/10.1038/nature19792
- Bang J., Kang D., Jung J. et al. SEPHS1: Its evolution, function and roles in development and diseases // Arch. Biochem. Biophys. 2022. V. 730. https://doi.org/10.1016/j.abb.2022.109426
- Excoffier L., Lischer H.E.L. Arlequin suite ver. 3.5: A new series of programs to perform population genetics analyses under Linux and Windows // Mol. Ecol. Resour. 2010. V. 10. P. 564–567. https://doi.org/10.1111/j.1755-0998.2010.02847.x
- Watterson G.A. The homozygosity test after a change in population size // Genetics. 1986. V. 112. P. 899–907. https://doi.org/10.1093/genetics/112.4.899
- Slatkin M. A correction to the exact test based on the Ewens sampling distribution. Genet. Res. 1996. V. 68. P. 259–260. https://doi.org/10.1017/s0016672300034236
- Yi X., Liang Y., Huerta-Sanchez E. et al. Sequencing of 50 human exomes reveals adaptation to high altitude // Science. 2010. V. 329. P. 75–78. https://doi.org/10.1126/science.1190371
- Fumagalli M., Moltke I., Grarup N. et al. Greenlandic Inuit show genetic signatures of diet and climate adaptation // Science. 2015. V. 349. P. 1343–1347. https://doi.org/10.1126/science.aab2319
- Takata Y., King I.B., Lampe J.W. et al. Genetic variation in GPX1 is associated with GPX1 activity in a comprehensive analysis of genetic variations in selenoenzyme genes and their activity and oxidative stress in humans // J. Nutr. 2012. V. 142. P. 419–426. https://doi.org/10.3945/jn.111.151845
- Jablonska E., Gromadzinska J., Peplonska B. et al. Lipid peroxidation and glutathione peroxidase activity relationship in breast cancer depends on functional polymorphism of GPX1 // BMC Cancer. 2015. V. 15. P. 657. https://doi.org/10.1186/s12885-015-1680-4
- Chan P.H.Y., Chan K.Y.Y., Schooling C.M. et al. Association between genetic variations in GSH-related and MT genes and low-dose methylmercury exposure in children and women of childbearing age: А pilot study // Environ. Res. 2020. V. 187. https://doi.org/10.1016/j.envres.2020.109703
- Kwon J.W., Shin E.S., Lee J.E. et al. Genetic variations in TXNRD1 as potential predictors of drug-induced liver injury // Allergy Asthma Immunol. Res. 2012. V. 4. P. 132–136. https://doi.org/10.4168/aair.2012.4.3.132
- Adlard B., Bonefeld-Jørgensen E.C., Dudarev A.A. et al. Levels and trends of metals in human populations living in the Arctic // Int. J. Circumpolar Health. 2024. V. 83. https://doi.org/10.1080/22423982.2024.2386140
- Dudarev A.A., Chupakhin V.S., Vlasov S.V. et al. Traditional diet and environmental contaminants in coastal Chukotka III: Metals // Int. J. Environ. Res. Public Health. 2019. V. 16. https://doi.org/10.3390/ijerph16050699
- Ikemoto T., Kunito T., Tanaka H. et al. Detoxification mechanism of heavy metals in marine mammals and seabirds: Interaction of selenium with mercury, silver, copper, zinc, and cadmium in liver // Arch. Environ. Contam. Toxicol. 2004. V. 47. P. 402–413. https://doi.org/10.1007/s00244-004-3188-9
- Rupa S.A., Patwary M.A.M., Matin M.M. et al. Interaction of mercury species with proteins: Тowards possible mechanism of mercurial toxicology // Toxi- col. Res. 2023. V. 12. P. 355–368. https://doi.org/10.1093/toxres/tfad039
Қосымша файлдар

