Association of VNTR Polymorphism of the AS3MT Gene with the Risk of Schizophrenia

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The AS3MT gene encodes arsenic(III) methyltransferase. VNTR polymorphism of the AS3MT gene is characteristic only for the human genome. It is associated with the expression of a human-specific AS3MTd2d3 protein isoform, which is a potential risk factor for the development of schizophrenia. In this study, we for the first time have analyzed the distribution of frequencies of alleles and genotypes of VNTR polymorphism in a large sample of ethnic Russians. The association of VNTR with the risk of schizophrenia has been studied. The study included 1002 patients with schizophrenia and schizophrenia spectrum disorders and 1510 people of the control group. Women with the V3/V3 genotype have an increased risk of schizophrenia (OR = 1.4, 95% CI: 1.11–1.77).

Sobre autores

G. Korovaitseva

Mental Health Research Centre

Autor responsável pela correspondência
Email: korovaitseva@mail.ru
Russia, 115522, Moscow

T. Lezheiko

Mental Health Research Centre

Email: golimbet@mail.ru
Russia, 115522, Moscow

I. Oleichik

Mental Health Research Centre

Email: golimbet@mail.ru
Russia, 115522, Moscow

V. Golimbet

Mental Health Research Centre

Autor responsável pela correspondência
Email: golimbet@mail.ru
Russia, 115522, Moscow

Bibliografia

  1. Riley B., Kendler K.S. Molecular genetic studies of schizophrenia // Eur. J. Hum. Genet. 2006. V. 14. № 6. P. 669–680. https://doi.org/10.1038/sj.ejhg.5201571
  2. Marder S.R., Cannon T.D. Schizophrenia. // N. Engl. J. Med. 2019. V. 381. № 18. P. 1753–1761. https://doi.org/10.1056/NEJMra1808803
  3. Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci // Nature. 2014. V. 511. P. 421–427. https://doi.org/10.1038/nature13595
  4. Lam M., Chen C.Y., Li Z. et al. Comparative genetic architectures of schizophrenia in East Asian and European populations // Nat. Genet. 2019. V. 51. № 12. P. 1670–1678. https://doi.org/10.1038/s41588-019-0512-x
  5. Jaffe A.E., Straub R.E., Shin J.H. et al. Developmental and genetic regulation of the human cortex transcriptome illuminate schizophrenia pathogenesis // Nat. Neurosci. 2018. V. 21. № 8. P. 1117–1125. https://doi.org/10.1038/s41593-018-0197-y
  6. Takata A., Matsumoto N., Kato T. Genome-wide identification of splicing QTLs in the human brain and their enrichment among schizophrenia-associated loci // Nat. Commun. 2017. V. 8. P. 14519–14529. https://doi.org/10.1038/ncomms14519
  7. Huo Y., Li S., Liu J. et al. Functional genomics reveal gene regulatory mechanisms underlying schizophrenia risk // Nat. Commun. 2019. V. 10. № 1. P. 670–688. https://doi.org/10.1038/s41467-019-08666-4
  8. Li M., Jaffe A.E., Straub R.E. et al. A human-specific AS3MT isoform and BORCS7 are molecular risk factors in the 10q24.32 schizophrenia-associated locus // Nat. Med. 2016. V. 22. № 6. P. 649–656. https://doi.org/10.1038/nm.4096
  9. Schizophrenia Working Group of the Psychiatric Genomics Consortium, Ripke S., Walters J.T., O’Donovan M.C. Mapping genomic loci prioritises genes and implicates synaptic biology in schizophrenia // MedRxiv. 2020.09.12. https://doi.org/10.1101/2020.09.12.20192922
  10. Trubetskoy V., Pardiñas A.F., Qi T. et al. Mapping genomic loci implicates genes and synaptic biology in schizophrenia // Nature. 2022. Apr 8. https://doi.org/10.1038/s41586-022-04434-5
  11. Li L., Chang H., Huang T. et al. Recent positive selection drives the expansion of a schizophrenia-associated variant within 10q24.33 in human populations through its pleiotropic effects on diverse human complex traits // J. Psychiatry Brain Sci. 2017. V. 2. № 1. P. 1–17. https://doi.org/10.20900/jpbs.20170001
  12. Yu H., Yan H., Li J. et al. Common variants on 2p16.1, 6p22.1 and 10q24.32 are associated with schizophrenia in Han Chinese population // Mol. Psychiatry. 2017. V. 22. № 7. P. 954–960. https://doi.org/10.1038/mp.2016.212
  13. Xiao X., Luo X.J., Chang H. et al. Evaluation of European schizophrenia GWAS loci in Asian populations via comprehensive meta-analyses // Mol. Neurobiol. 2017. V. 54. № 6. P. 4071–4080. https://doi.org/10.1007/s12035-016-9990-3
  14. Duarte R.R.R., Troakes C., Nolan M. et al. Genome-wide significant schizophrenia risk variation on chromosome 10q24 is associated with altered cis-regulation of BORCS7, AS3MT, and NT5C2 in the human brain // Am. J. Med. Genet. (part B Neuropsychiatr. Genet). 2016. V. 171. № 6. P. 806–814. https://doi.org/10.1002/ajmg.b.32445
  15. Guan F., Zhang T., Li L. et al. Two-stage replication of previous genome-wide association studies of AS3MT-CNNM2-NT5C2 gene cluster region in a large schizophrenia case-control sample from Han Chinese population // Schizophrenia Research. 2016. V. 176. P. 125–130. https://doi.org/10.1016/j.schres.2016.07.004
  16. Cai X., Yang Z.H., Li H.J. et al. A human-specific schizophrenia risk tandem repeat affects alternative splicing of a human-unique isoform AS3MTd2d3 and mushroom dendritic spine density // Schizophr. Bull. 2021. V. 47. № 1. P. 219–227. https://doi.org/10.1093/schbul/sbaa098
  17. Zhao W., Zhang Q., Chen X. et al. The VNTR of the AS3MT gene is associated with brain activations during a memory span task and their training-induced plasticity // Psychol. Med. 2021. V. 51. № 11. P. 1927–1932. https://doi.org/10.1017/S0033291720000720
  18. Wood T.C., Salavagionne O.E., Mukherjee B. et al. Human arsenic methyltransferase (AS3MT) pharmacogenetics: gene resequencing and functional genomics studies // J. Biol. Chem. 2006. V. 281. № 11. P. 7364–7373. https://doi.org/10.1074/jbc.M512227200
  19. Li X., Xiao Y., Zhao Q. et al. The neuroplastic effect of working memory training in healthy volunteers and patients with schizophrenia: Implications for cognitive rehabilitation // Neuropsychologia. 2015. V. 75. P. 149–162. https://doi.org/10.1016/j.neuropsychologia.2015.05.029
  20. Thermenos H.W., Keshavan M.S., Juelich R.J. et al. A review of neuroimaging studies of young relatives of individuals with schizophrenia: a developmental perspective from schizotaxia to schizophrenia // Am. J. Med. Genet. (part B Neuropsychiatr Genet). 2013. V. 162. № 7. P. 604–635. https://doi.org/10.1002/ajmg.b.32170
  21. Berry K.P., Nedivi E. Spine dynamics: Are they all the same? // Neuron. 2017. V. 96. № 1. P. 43–55. https://doi.org/10.1016/j.neuron.2017.08.008
  22. Korovaitseva G.I., Gabaeva M.V., Yunilainen O.A., Golimbet V.E. Effect of VNTR polymorphism of the AS3MT gene and obstetrical complications on the severity of schizophrenia // Bull. Exp. Biol. Med. 2019. V. 168. № 1. P. 84–86. https://doi.org/10.1007/s10517-019-04653-3

Declaração de direitos autorais © Г.И. Коровайцева, Т.В. Лежейко, И.В. Олейчик, В.Е. Голимбет, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies