Differentiation of Juniperus deltoidеs R.P. Аdams in the Crimean-Caucasian Region According to the Variability of Microsatellite DNA Markers

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

*e-mail: hantemirova@ipae.uran.ru

The structure of genetic variability of the prickly juniper Juniperus deltoides R.P. Adams (family Cupressaceae), an important component of Mediterranean arid and semi-arid ecosystems was studied. We used for the first time 5 nuclear microsatellite loci developed for another juniper species J. cedrus Webb & Berthel. to genotype samples from 5 populations of J. deltoides located at the northeastern limit of the range in Eurasia (Western Crimea, Transcaucasia) and one Balkan population (Bulgaria). J. deltoides is characterized by an average level of genetic variability (He varies from 0.428 to 0.602) with the lowest values in the Crimean populations. Phylogenetic analyses revealed three genetic groups: Western Crimea, Transcaucasia (Krasnodar Territory) and Bulgarian population. Application of AMOVA to these groups showed statistically significant differentiation (9.9% of total variability, P < 0.001). The first two groups correspond to the previously identified Asian group of J. deltoides, and the third group corresponds to the Balkan group. The differentiation of the Crimean populations from geographically close Caucasian populations is shown by us for the first time.

Full Text

Restricted Access

About the authors

E. V. Hantemirova

Institute of Plant and Animal Ecology, Ural Division of the Russian Academy of Sciences

Author for correspondence.
Email: hantemirova@ipae.uran.ru
Russian Federation, Ekaterinburg, 620144

Tz. Radoukova

University of Plovdiv “Paisii Hilendarski”

Email: hantemirova@ipae.uran.ru

Department of Botany and Biological Education

Bulgaria, Plovdiv, 4000

References

  1. Farjon A., Filer D. An Atlas of the World’s Conifers: an Analysis of Their Distribution, Biogeography, Diversity and Conservation Status. 2013. Brill, Leiden-Boston. 524 p.
  2. Adams R.P. Juniperus deltoides, a new species, and nomenclatural notes on Juniperus polycarpos and J. turcomanica (Cupressaceae) // Phytologia. 2004. V. 86. P. 49–53.
  3. Adams R.P, Morris J.A, Padney R.N, Schwarzbach A.E. Cryptic speciation between Juniperus deltoides and Juniperus oxycedrus (Cupressaceae) in the Mediterranean // Biochem. System. and Ecology. 2005. V. 33. P. 771–787. https://doi.org/10.1016/j.bse.2005.01.001
  4. Adams R.P. Morphological comparison and key to Juniperus deltoides and J. oxycedrus // Phytologia. 2014. V. 96 P. 58–62.
  5. Roma-Marzio F., Najar B., Alessandri et al. Taxonomy of prickly juniper (Juniperus oxycedrus group): A phytochemical-morphometric combined approach at the contact zone of two cryptospecies // Phytochemistry. 2017. V. 141. P. 48–60. https://doi.org/10.1016/j.phytochem.2017.05.008
  6. Bennet K.D., Tzedakis P.C., Willis K.J. Quaternary refugia of north European trees // J. Biogeogr. 1991. V. 18. P. 103–115. https://doi.org//10.2307/2845248
  7. Willis K., Rudner E., Sümegi P. The full-glacial forests of Central and Southeastern Europe // Quaternary Research. 2000. V. 53. I. 2. P. 203–213. https://doi.org/10.1006/qres.1999
  8. Klimko M., Boratynska K., Montserrat J.M. et al. Morphological variation of Juniperus oxycedrus subsp. oxycedrus (Cupressaceae) in the Mediterranean region // Flora. 2007. V. 202. P. 133–147. https://doi.org/10.1016/j.flora.2006.03.006
  9. Boratynski A., Wachowiak W., Dering M. et al. The biogeography and genetic relationships of Juniperus oxycedrus L. and related taxa from the Mediterranean and Macaronesian regions // Bot. J. Linn. Soc. 2014. V. 174. P. 637–653. https://doi.org/10.1111/boj.12147
  10. Красная книга Республики Крым. Растения, водоросли и грибы / Отв. ред. Ена А.В. , Фатерыга А.В.. Симферополь: ООО “ИТ “АРИАЛ”, 2015. 480 с.
  11. Красная книга Краснодарского края. Растения и грибы 3-е изд. Краснодар: 2017. 850 с.
  12. Ена А.В. Природная флора Крымского полуострова. Симферополь: Н. Орианда, 2012. 232 с.
  13. Devey M.E., Bell J.S., Smith D.N., Neale D.B. A genetic linkage map for Pinus radiata based on RFLP, RAPD and microsatellite markers // Theor. Appl. Genet. 1996. V. 92. P. 673–679. https://doi.org/10.1007/BF00226088
  14. Michalczyk I.M., Sebastiani I.F., Buonamici A. et al. Characterization of highly polymorphic nuclear microsatellite loci in Juniperus communis L. // Mol. Ecol. Notes. 2006. V. 6. P. 346–348. https://doi.org//10.1111/j.1471-8286.2005.01227.x
  15. Zhang Q., Yang Y.Z., Wu G.L. et al. Isolation and characterization of microsatellite DNA primers in Juniperus przewalskii Kom (Cupressaceae) // Conserv. 2008. V. 9. P. 767–769. https://doi.org/10.1007/s10592-007-9387-y
  16. Rumeu B., Sosa P.A., Nogales M., Gonzalez-Perez M.A. Development and characterization of 13 SSR markers for an endangered insular juniper (Juniperus cedrus Webb & Berth.) // Conserv. Genet. Resources. 2013. V. 5. P. 457–459. https://doi.org/10.1007/ s12686-012-9827-y
  17. Peakall R., Smouse P.E. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research-an update // Bioinformatics. 2012. V. 28. P. 2537–2539. https://doi.org/10.1093/ bioinformatics/bts46 0
  18. Excoffier L., Lischer H. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows // Mol. Ecol. Resour. 2010. V. 10. P. 564–567. https://doi.org/10.1111/j.1755-0998.2010.02847.x
  19. Raymond M., Rousset F. GENEPOP (Version 1.2): Population genetics software for exact tests and ecumenicism // J Hered. 1995. V. 86. P. 248–249. https://doi.org/10.1111/j.1471-8286.2007.01931.x
  20. Brookfield J. A simple new method for estimating null allele frequency from heterozygote deficiency // Mol. Ecol. 1996. V. 5. P. 453–455. https://doi.org/10.1046/j.1365-294X.1996.00098.x
  21. Oosterhout C.V., Hutchinson W.F., Wills D.P.M., Shipley P. Micro-checker: Software for identifying and correcting genotyping errors in microsatellite data // Mol. Ecol. Notes. 2004. V. 4. P. 535–538. https://doi.org/10.1111/j.1471-8286.2004.00684.x
  22. Nei M., Tajima F., Tateno Y. Accuracy of estimated phylogenetic trees from molecular data // J. Mol. Evol. 1983. V. 19. P. 153–70. https://doi.org/10.1007/BF02300753
  23. Rohlf F.J. NTSYS-pc. Numerical taxonomy and multivariate analysis systems // Exeter Software, Applied Biostatistics. New York: 1992. 225 p.
  24. Pritchard J.K., Stephens M., Donnelly P. Inference of population structure using multilocus genotype data // Genetics. 2000. V. 155. P. 945–959. 10.1093/genetics/155.2.945' target='_blank'>https://doi.org/doi: 10.1093/genetics/155.2.945
  25. Earl D.A., von Holdt B.M. Structure harvester: A website and program for visualizing STRUCTURE output and implementing the Evanno method // Conserv. Genet. Resour. 2012. V. 4. P. 359–361. https://doi.org/10.1007/s12686-011-9548-7
  26. Dupanloup I., Schneider S., Excoffier L. A simulated annealing approach to define the genetic structure of populations // Mol. Ecol. 2002. V. 11. P. 2571–2581. doi.org/10.1046/j.1365-294X.2002.01650 .x
  27. Mantel N.A. The detection of disease clustering and generalized regression approach // Cancer. Res. 1967. V.27. P. 209–220.
  28. Evren O., Kaya N. High genetic diversity within and low differentiation among Juniperus excelsa M. Bieb.populations: Molecular markers reveal their genetic structure patterns // Turk. J. Bot. 2021. V. 45. P. 192–202. https://doi.org/10.3906/bot-2006-22
  29. Хантемирова Е.В., Бессонова В.А. Генетическое разнообразие можжевельника обыкновенного (Juniperus communis L.) в Евразии и на Аляске по данным анализа ядерных микросателлитов // Генетика. 2023. Т. 59. № 3. С. 316–326. EDN: INZGJC https://doi.org/10.31857/S0016675823030050
  30. Ritland C., Pape T., Ritland K. Genetic structure of yellow cedar (Chamaecyparis nootkatensis) // Can. J. Bot. 2001. V. 79. P. 822–828. https://doi.org/10.1139/b01-053
  31. Lantushenko A.O., Korenkova O.O. Syrovets A.A. et al. Morphological and phylogenetic features of the Crimean population of Juniperus deltoides R.P. Adams // Vavilovskii Zhurnal Genet Selektsii. 2023. V. 27(4). P. 306-315. https://doi.org/10.18699/VJGB-23-37
  32. Тахтаджян А.Л. Флористические области Земли. Л.: Наука, 1978. 247 с.
  33. Gömöry D, Paule L, Mačejovský V. Phylogeny of beech in western Eurasia as inferred by approximate Bayesian computation // Acta Soc. Bot. Pol. 2018. V. 87. I. 2. https://doi.org/10.5586/asbp.3582
  34. Semerikova S.A., Podergina S.M., Tashev A.N., Semerikov V.L. Phylogeography of Oaks in the Crimea Reveals Pleistocene Refugia and Migration Routes // Russ. J. Ecology. 2023. V. 54. № 3. P. 197–212.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Ranges of Juniperus deltoides (red) and J. oxycedrus (blue) according to R.P. Adams [3].

Download (309KB)
3. Fig. 2. Outlines of the study area with the location of the studied populations of J. deltoides, distribution of genetic groups, and graphs with SSR polymorphism estimates. Population numbers and geographic coordinates are explained in Table 1. a – distribution of genetic groups of J. deltoidеs based on SSR marker polymorphism. The color of the icons corresponds to the SAMOVA and PCoA groups. b – ordination of J. deltoides populations by the principal coordinate method (PCoA) based on their genetic distances; Roman numerals indicate groups according to SAMOVA. c – UPGMA dendrogram of J. deltoides populations constructed on the basis of their genetic distances in the NTSYSpc 2.1 program. d – results of the STRUCTURE analysis.

Download (623KB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies