Comparative Analysis of the HAP2/GCS1, GEX2 Genes Expression in Maize Lines of Saratov Selection

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The haploinduction phenomenon have a scientific and practical aspects for development the effective haploid-inducing maize line and diploid homozygous lines creation. The article discusses the relationship between the maize haploid–induction and the violation of the gamete interactions, in particular for GEX2-HAP2/GCS1-mediated adhesion and fusion of gamete membranes in Zarodishevii Marker Saratovskii Purpurnii (ZMSP) maize lines. Using real-time RT-PCR method, it was found that the GEX2, HAP2/GCS1 genes are expressed in sperm and ovules, but the maize haploid-inducing ability does not correlate with their expression. It was shown that the ZMSP haploid-inducing line have 27 SNP, one 9-bp insertion, 2-bp SNP and the corresponding 10 amino acid substitutions with two insertions in the GEX2 protein in comparing with reference B73 line. It was found that HAP2/GCS1, as a conservative protein for membrane fusion has only one amino acid substitution in ZMSP in comparing with B73 maize and Brown Marker maize lines.

About the authors

E. M. Moiseeva

Institute of Biochemistry and Physiology of Plants and Microorganisms – Subdivision of the Federal
Research Center, Saratov Scientific Centre of the Russian Academy of Sciences

Email: chumakov_m@ibppm.ru
Russia, 410049, Saratov

Yu. S. Gusev

Institute of Biochemistry and Physiology of Plants and Microorganisms – Subdivision of the Federal
Research Center, Saratov Scientific Centre of the Russian Academy of Sciences; Chernyshevsky Saratov National Research State University

Email: chumakov_m@ibppm.ru
Russia, 410049, Saratov; Russia, 410012, Saratov

O. V. Gutorova

Chernyshevsky Saratov National Research State University

Email: chumakov_m@ibppm.ru
Russia, 410012, Saratov

M. I. Chumakov

Institute of Biochemistry and Physiology of Plants and Microorganisms – Subdivision of the Federal
Research Center, Saratov Scientific Centre of the Russian Academy of Sciences

Author for correspondence.
Email: chumakov_m@ibppm.ru
Russia, 410049, Saratov

References

  1. Навашин С.Г. Избранные труды. Т. 1. М.; Л.: Изд-во АН СССР, 1951. 364 с.
  2. Dresselhaus T., Snell W.J. Fertilization: A sticky sperm protein in plants // Current Biol. 2014. V. 24. № 4. P. R164–R166. https://doi.org/10.1016/j.cub.2013.12.044
  3. Coe E.H. A line of maize with high haploid frequency // The Am. Naturalist. 1959. V. 93. № 873. P. 381–382. https://doi.org/10.1086/282098
  4. Chase S.S. Monoploid frequencies in a commercial double cross hybrid maize, and in its component single cross hybrids and inbred lines // Genetics. 1949. V. 34. № 3. P. 328–332. https://doi.org/10.1093/genetics/34.3.328
  5. Тырнов В.С., Завалишина А.Н. Индукция высокой частоты возникновения матроклинных гаплоидов кукурузы // Докл. АН СССР. 1984. Т. 276. № 3. С. 735–738.
  6. Shatskaya O.A., Zabirova E.R., Shcherbak V.S., Chumak M.V. Mass induction of maternal haploids in corn // Maize Genet. Cooperation Newsletter. 1994. V. 68. P. 51.
  7. Bylich V.G., Chalyk S.T. Existence of pollen grains with a pair of morphologically different sperm nuclei as a possible cause of the haploid-inducing capacity in ZMS line // Maize Genet. Cooperation Newsletter. 1996. V. 70. P. 33.
  8. Chalyk S., Baumann A., Daniel G., Eder J. Aneuploidy as a possible cause of haploid-induction in maize // Maize Genet. Cooperation Newsletter. 2003. V. 77. P. 29.
  9. Hu H.L., Schrag T.A., Peis R. et al. The genetic basis of haploid induction in maize identified with a novel genome-wide association method // Genetics. 2016. V. 202. № 4. P. 1267–1276. https://doi.org/10.1534/genetics.115.184234
  10. Чумаков М.И., Мазилов С.И. Генетический контроль гиногенеза у кукурузы (обзор) // Генетика. 2022. Т. 58. № 4. С. 388–397.
  11. Еналеева Н.Х., Тырнов В.С., Селиванова Л.П. Одинарное оплодотворение и проблема гаплоиндукции у кукурузы // Докл. АН СССР. 1997. Т. 353. № 3. С. 405–407.
  12. Гуторова О.В. Исследование женского гаметофита линии-гаплоиндуктора кукурузы ЗМС-П // Бюл. Ботанического сада Саратовского гос. ун-та. 2006. № 5. С. 304–307.
  13. Колесова А.Ю., Гуторова О.В. Цитоэмбриологическое исследование гаплоиндуцирующей линии кукурузы ЗМС-8 // Бюл. Ботанического сада Саратовского гос. ун-та. 2008. № 7. С. 202–205.
  14. Тырнов B.C., Еналеева Н.Х. Автономное развитие зародыша и эндосперма у кукурузы // Докл. АН СССР. 1983. Т. 272. № 3. С. 722–725.
  15. Enaleeva N.Kh., Tyrnov V.S. Cytological investigation of apomixis in AT-1 plants of corn // Maize Genet. Cooperation. Newsletter. 1997. V. 71. P. 74–75.
  16. Еналеева Н.Х., Отькало О.В., Тырнов В.С. Фенотипическое проявление мутации ig в мегагаметофите кукурузы линии Зародышевый маркер // Генетика. 1998. Т. 34. № 2. С. 259–265.
  17. Kelliher T., Starr D., Richbourg L. et al. MATRILINEAL, a sperm-specific phospholipase, triggers maize haploid induction // Nature. 2017. V. 542. № 7639. P. 105–109. https://doi.org/10.1038/nature20827
  18. Gilles L.M., Khaled A. Loss of pollen-specific phospholipase NOT LIKE DAD triggers gynogenesis in maize // EMBO J. 2017. V. 36. № 6. P. 707–717. https://doi.org/10.15252/embj.201796603
  19. Liu C., Li X., Meng D., Zhong Y. et al. A 4-bp insertion at ZmPLA1 encoding a putative phospholipase a generates haploid induction in maize // Mol. Plant. 2017. V. 10. № 3. P. 520–522. https://doi.org/10.1016/j.molp.2017.01.011
  20. Чумаков М.И. Матроклинная гаплоидия и взаимодействие гамет у кукурузы // Генетика. 2018. Т. 54. № 10. С. 1120–1124.
  21. Mori H., Kuroiwa T., Kranz E., Scholten S. GENERATIVE CELL SPECIFIC 1 is essential for angiosperm fertilization // Nat. Cell Biol. 2006. V. 8. P. 64–71. https://doi.org/10.1038/ncb1345
  22. Besser V.K., Frank A.C., Johnson M.A., Preuss D. Arabidopsis HAP2 (GCS1) is a sperm-specific gene required for pollen tube guidance and fertilization // Development. 2006. V. 133. № 23. P. 4761–4769. https://doi.org/10.1242/dev.02683
  23. Mori T., Igawa T., Tamiya G. et al. Gamete attachment requires GEX2 for successful fertilization in Arabidopsis // Current Biol. 2014. V. 24. № 2. P. 170–175. https://doi.org/10.1016/j.cub.2013.11.030
  24. Wong J.L., Leydon A.R., Johnson M.A. HAP2(GCS1)-dependent gamete fusion requires a positively charged carboxy-terminal domain // PLoS Genetics. 2010. V. 6. № 3. https://doi.org/10.1371/journal.pgen.1000882
  25. Волохина И.В., Моисеева Е.М., Гусев Ю.С. и др. Анализ генов, контролирующих процесс слияния гамет, у гаплоиндуцирующей линии кукурузы ЗМС-П // Онтогенез. 2017. Т. 48. № 2. С. 134–139.
  26. Hoopes G.M., Hamilton J.P., Wood J.C. et al. An updated gene atlas for maize reveals organ-specific and stress-induced genes // The Plant J. 2019. V. 97. № 6. P. 1154–1167. https://doi.org/10.1111/tpj.14184
  27. Stelpflug S.C., Sekhon R.S., Vaillancourt B. et al. An expanded maize gene expression atlas based on RNA sequencing and its use to explore root development // The Plant Genome. 2016. V. 9. № 1. https://doi.org/10.3835/plantgenome2015.04.0025
  28. Engel M.L., Holmes-Davis R., McCormick S. Green sperm. Identification of male gamete promoters in Arabidopsis // Plant Physiol. 2005. V. 138. № 4. P. 2124–2133. https://doi.org/10.1104/pp.104.054213
  29. Ravi M., Chan S.W.L. Haploid plants produced by centromere-mediated genome elimination // Nature. 2010. V. 464. № 7288. P. 615–618.
  30. Zhang Z., Qiu F., Liu Y. et al. Chromosome elimination and in vivo haploid production induced by Stock 6-derived inducer line in maize (Zea mays L.) // Plant Cell Reports. 2008. V. 27. № 12. P. 1851–1860. https://doi.org/10.1007/s00299-008-0601-2
  31. Qiu F., Liang Y., Li Y. et al. Morphological, cellular and molecular evidences of chromosome random elimination in vivo upon haploid induction in maize // Current Plant Biol. 2014. V. 1. P. 83–90. https://doi.org/10.1016/j.cpb.2014.04.001
  32. Kelliher T., Starr D., Wang W. et al. Maternal haploids are preferentially induced by CENH3-tailswap transgenic complementation in maize // Frontiers Plant Sci. 2016. V. 7. P. 414. https://doi.org/10.3389/fpls.2016.00414
  33. Xu X., Li L., Dong X. et al. Gametophytic and zygotic selection leads to segregation distortion through in vivo induction of a maternal haploid in maize // J. Experimental Bot. 2013. V. 64. № 4. P. 1083–1096. https://doi.org/10.1093/jxb/ers393
  34. Takahashi T., Mori T., Ueda K. et al. The male gamete membrane protein DMP9/DAU2 is required for double fertilization in flowering plants // Development. 2018. V. 145. № 23. dev170076. https://doi.org/10.1242/dev.170076
  35. Cyprys P., Lindemeier M., Sprunck S. Gamete fusion is facilitated by two sperm cell-expressed DUF679 membrane proteins // Nat. Plants. 2019. V. 5. P. 253–257. https://doi.org/10.1038/s41477-019-0382-3
  36. Zhong Y., Liu C., Qi X. et al. Mutation of ZmDMP enhances haploid induction in maize // Nat. Plants. 2019. V. 5. P. 575–580. https://doi.org/10.1038/s41477-019-0443-7
  37. Conner J.A., Mookkan M., Huo H. et al. A parthenogenesis gene of apomict origin elicits embryo formation from unfertilized eggs in a sexual plant // Proc. Natl Acad. Sci. USA. 2015. V. 112. № 36. P. 11205–11210. https://doi.org/10.1073/pnas.1505856112
  38. Conner J.A., Podio M., Ozias-Akins P. Haploid embryo production in rice and maize induced by PsASGR-BBML transgenes // Plant Reproduction. 2017. V. 30. P. 41–52.
  39. Zavalishina A.N., Tyrnov V.S. Induction of matroclinal haploidy in maize in vivo // Reproductive Biol. Plant Breeding: XIII EUCARPiA Congr. 1992. P. 221–222.
  40. Гуторова О.В., Апанасова Н.В., Юдакова О.И. Создание генетически маркированных линий кукурузы с наследуемым и индуцированным типами партеногенеза // Изв. Самарского науч. центра РАН. 2016. Т. 18. № 2-2. С. 341–344.
  41. Chase S.S. Monoploids and monoploid-derivatives of maize (Zea mays L.) // The Bot. Review. 1969. V. 35. № 2. P. 117–168.
  42. Bijli K.M., Singh B.P., Sridhara S., Arora N. Isolation of total RNA from pollens // Preparative Biochem. Biotechnol. 2001. V. 31. № 2. P. 155–162. https://doi.org/10.1081/PB-100103381
  43. Manoli A., Sturaro A., Trevisan S. et al. Evaluation of candidate reference genes for qPCR in maize // J. Plant Physiol. 2012. V. 169. № 8. P. 807–815. https://doi.org/10.1016/j.jplph.2012.01.019
  44. Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2‒ΔΔCT method // Methods. 2001. V. 25. № 4. P. 402–408. https://doi.org/10.1006/meth.2001.1262
  45. Weaver S., Dube S., Mir A. et al. Taking qPCR to a higher level: analysis of cnv reveals the power of high throughput qPCR to enhance quantitative resolution // Methods. 2010. V. 50. № 4. P. 271–276. https://doi.org/10.1016/j.ymeth.2010.01.003
  46. Alandete-Saez M., Ron M., Mccormick S. GEX3 expressed in the male gametophyte and in the egg cell of Arabidopsis is essential for micropylar pollen tube guidance and plays a role during early embryogenesis // Mol. Plant. 2008. V. 1. № 4. P. 586–598. https://doi.org/10.1093/mp/ssn015
  47. Borges F., Gomes G., Gardner R. et al. Comparative transcriptomics of Arabidopsis sperm cells // Plant Physiol. 2008. V. 148. № 2. P. 1168–1181. https://doi.org/10.1104/pp.108.125229
  48. Valansi C., Moi D., Leikina E. et al. Arabidopsis HAP2/GCS1 is a gamete fusion protein homologous to somatic and viral fusogens // J. Cell Biol. 2017. V. 216. P. 571–581. https://doi.org/10.1083/jcb.201610093
  49. Fedry J., Forcina J., Legrand P. et al. Evolutionary diversification of the HAP2 membrane insertion motifs to drive gamete fusion acrosseukaryotes // PLoS Biology. 2018. V. 16(8): e2006357. https://doi.org/10.1371/journal.pbio.2006357

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (64KB)
3.

Download (1MB)

Copyright (c) 2023 Е.М. Моисеева, Ю.С. Гусев, О.В. Гуторова, М.И. Чумаков

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies