The Topological Support of the z-Measures on the Thoma Simplex


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The Thoma simplex Ω is an infinite-dimensional space, a kind of dual object to the infinite symmetric group. The z-measures are probability measures on Ω depending on three continuous parameters. One of them is the parameter of the Jack symmetric functions, and in the limit as it goes to 0, the z-measures turn into the Poisson–Dirichlet distributions. The definition of the z-measures is somewhat implicit. We show that the topological support of any nondegenerate z-measure is the whole space Ω.

作者简介

G. Olshanski

Institute for Information Transmission Problems; Skolkovo Institute of Science and Technology; Department of Mathematics, National Research University Higher School of Economics

编辑信件的主要联系方式.
Email: olsh2007@gmail.com
俄罗斯联邦, Moscow; Moscow; Moscow

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2018