Invariant Subspaces for Commuting Operators on a Real Banach Space


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

It is proved that the commutative algebra A of operators on a reflexive real Banach space has an invariant subspace if each operator TA satisfies the condition

\({\left\| {1 - \varepsilon {T^2}} \right\|_e} \leqslant 1 + o\left( \varepsilon \right)as\varepsilon \searrow 0,\)
where ║ · ║e denotes the essential norm. This implies the existence of an invariant subspace for any commutative family of essentially self-adjoint operators on a real Hilbert space.

作者简介

V. Lomonosov

Department of Mathematics, Kent State University

编辑信件的主要联系方式.
Email: lomonoso@mcs.kent.edu
美国, Kent

V. Shul’man

Department of Higher Mathematics, Vologda State University

Email: lomonoso@mcs.kent.edu
俄罗斯联邦, Vologda

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media, LLC, part of Springer Nature, 2018