Tangential polynomials and matrix KdV elliptic solitons


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Let (X, q) be an elliptic curve marked at the origin. Starting from any cover π: Γ → X of an elliptic curve X marked at d points {πi} of the fiber π−1(q) and satisfying a particular criterion, Krichever constructed a family of d × d matrix KP solitons, that is, matrix solutions, doubly periodic in x, of the KP equation. Moreover, if Γ has a meromorphic function f: Γ → P1 with a double pole at each pi, then these solutions are doubly periodic solutions of the matrix KdV equation Ut = 1/4(3UUx + 3UxU + Uxxx). In this article, we restrict ourselves to the case in which there exists a meromorphic function with a unique double pole at each of the d points {pi}; i.e. Γ is hyperelliptic and each pi is a Weierstrass point of Γ. More precisely, our purpose is threefold: (1) present simple polynomial equations defining spectral curves of matrix KP elliptic solitons; (2) construct the corresponding polynomials via the vector Baker–Akhiezer function of X; (3) find arbitrarily high genus spectral curves of matrix KdV elliptic solitons.

作者简介

A. Treibich

Université d’Artois; Universidad de la República, RN

编辑信件的主要联系方式.
Email: treibich@cmat.edu.uy
法国, Arras, EA2462 LML; Montevideo

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media New York, 2016