Adiabatic Evolution Generated by a Schrödinger Operator with Discrete and Continuous Spectra


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

In the paper, we consider the one-dimensional nonstationary Schrödinger equation with a potential slowly depending on time. It is assumed that the corresponding stationary operator depending on time as a parameter has a finite number of negative eigenvalues and absolutely continuous spectrum filling the positive semiaxis. A solution close at some moment to an eigenfunction of the stationary operator is studied. We describe its asymptotic behavior in the case where the eigenvalues of the stationary operator move to the edge of the continuous spectrum and, having reached it, disappear one after another.

作者简介

A. Smirnov

St. Petersburg State University

编辑信件的主要联系方式.
Email: a.smirnov@spbu.ru
俄罗斯联邦, St. Petersburg

A. Fedotov

St. Petersburg State University

Email: a.smirnov@spbu.ru
俄罗斯联邦, St. Petersburg

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media New York, 2016