On Homogenization for Non-Self-Adjoint Periodic Elliptic Operators on an Infinite Cylinder
- 作者: Senik N.N.1
-
隶属关系:
- St. Petersburg State University
- 期: 卷 50, 编号 1 (2016)
- 页面: 71-75
- 栏目: Brief Communications
- URL: https://journals.rcsi.science/0016-2663/article/view/234168
- DOI: https://doi.org/10.1007/s10688-016-0131-6
- ID: 234168
如何引用文章
详细
We consider an operator Aε on L2(\({\mathbb{R}^{{d_1}}} \times {T^{{d_2}}}\)) (d1 is positive, while d2 can be zero) given by Aε = −div A(ε−1x1,x2)∇, where A is periodic in the first variable and smooth in a sense in the second. We present approximations for (Aε − μ)−1 and ∇(Aε − μ)−1 (with appropriate μ) in the operator norm when ε is small. We also provide estimates for the rates of approximation that are sharp with respect to the order.
作者简介
N. Senik
St. Petersburg State University
编辑信件的主要联系方式.
Email: N.N.Senik@gmail.com
俄罗斯联邦, St. Petersburg
补充文件
