Brion’s theorem for Gelfand–Tsetlin polytopes


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

This work is motivated by the observation that the character of an irreducible gln-module (a Schur polynomial), being the sum of exponentials of integer points in a Gelfand–Tsetlin polytope, can be expressed by using Brion’s theorem. The main result is that, in the case of a regular highest weight, the contributions of all nonsimplicial vertices vanish, while the number of simplicial vertices is n! and the contributions of these vertices are precisely the summands in Weyl’s character formula.

Авторлар туралы

I. Makhlin

International Laboratory of Representation Theory and Mathematical Physics, National Research University Higher School of Economics; L. D. Landau Institute for Theoretical Physics, Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: imakhlin@mail.ru
Ресей, Moscow; Chernogolovka

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Springer Science+Business Media New York, 2016