The Strong Suslin Reciprocity Law and Its Applications to Scissor Congruence Theory in Hyperbolic Space
- Авторлар: Rudenko D.G.1
-
Мекемелер:
- National Research University Higher School of Economics
- Шығарылым: Том 50, № 1 (2016)
- Беттер: 66-70
- Бөлім: Brief Communications
- URL: https://journals.rcsi.science/0016-2663/article/view/234167
- DOI: https://doi.org/10.1007/s10688-016-0130-7
- ID: 234167
Дәйексөз келтіру
Аннотация
We prove the strong Suslin reciprocity law conjectured by A. B. Goncharov and describe its corollaries for the theory of scissor congruence of polyhedra in hyperbolic space. The proof is based on the study of Goncharov’s conjectural description of certain rational motivic cohomology groups of a field. Our main result is a homotopy invariance theorem for these groups.
Авторлар туралы
D. Rudenko
National Research University Higher School of Economics
Хат алмасуға жауапты Автор.
Email: rudenkodaniil@gmail.com
Ресей, Moscow
Қосымша файлдар
