On the Homogenization of the Stationary Periodic Maxwell System in a Bounded Domain


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In a bounded domain \(\mathscr{O}\) ⊂ ℝ3 of class C1,1, the stationary Maxwell system with boundary conditions of perfect conductivity is considered. It is assumed that the dielectric permittivity and the magnetic permeability are given by η(x/ε) and μ(x/ε), where η and μ are symmetric bounded positive definite matrix-valued functions periodic with respect to some lattice in ℝ3. Here ε > 0 is a small parameter. It is known that, as ε > 0, the solutions of the Maxwell system weakly converge in L2(\(\mathscr{O}\)) to the solutions of the homogenized Maxwell system with constant effective coefficients. Classical results are improved and approximations for the solutions in the L2(\(\mathscr{O}\))-norm with error estimates of operator type are found.

About the authors

T. A. Suslina

St. Petersburg State University

Author for correspondence.
Email: t.suslina@spbu.ru
Russian Federation, St. Petersburg

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Springer Science+Business Media, LLC, part of Springer Nature