Comparison of Halophyte and Glycophyte Plants from the Amaranthaceae-Chenopodiaceae Family in Their Ion-Exchange Properties of Polymeric Matrix of Cell Walls

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Ion-exchanging properties of the polymeric matrix of the cell walls isolated from leaves were examined. The glycophyte 55-day-old plants of spinach (Spinacia oleracea L., cv. Matador) grown on a nutrient solution containing 0.5, 150, or 250 mM NaCl and the halophyte seepweed (Suaeda altissima (L.) Pall.) of the same age grown at 0.5, 250, or 750 mM NaCl were compared. The ion-exchange capacity of the cell walls was estimated at different pH and ionic strength of a solution. In the structure of the leaf cell walls, three types of cation-exchange groups were found, namely, two types of carboxylic groups (one of them belongs to galacturonic acid residue) and phenolic OH-groups. The quantities of the groups of each type and their ionization constants were determined. The qualitative composition of the ion-exchange groups in the leaf cell walls was found to be uniform in both plant species regardless of their nutrition. However, the quantity of the carboxylic groups of galacturonic acid depended on the ambient salt concentration in a different manner in the glycophyte and halophyte. This change in the composition of functional groups of cell wall polymers was more pronounced in the halophyte and is apparently one of the responses of these plants to salinization. The sharp increase in the NaCl concentration in the medium leads to a decrease in pH in the extracellular water space due to ion-exchange reactions between sodium ions coming from the external medium and protons of the ionized carboxylic groups of the cell walls. The results are discussed in the aspect of participation of the leaf cell walls in plant responses to salinization.

作者简介

N. Meychik

Faculty of Biology, Moscow State University

Email: meychik@mail.ru
119234, Moscow, Russia

Yu. Nikolaeva

Faculty of Biology, Moscow State University

Email: meychik@mail.ru
119234, Moscow, Russia

M. Kushunina

Faculty of Biology, Moscow State University

编辑信件的主要联系方式.
Email: meychik@mail.ru
119234, Moscow, Russia

参考

  1. Aleman F., Nieves-Cordones M., Martınez V., Rubio F. Potassium/sodium steady-state homeostasis in Thellungiella halophila and Arabidopsis thaliana under long-term salinity conditions // Plant Sci. 2009. V. 176. P. 768. https://doi.org/10.1016/j.plantsci.2009.02.020
  2. Ghars M.A., Parre E., Debez A., Bordenave M., Richard L., Leport L., Bouchereau A., Savoureґ A., Abdelly C. Comparative salt tolerance analysis between Arabidopsis thaliana and Thellungiella halophila, with special emphasis on K+/Na+ selectivity and proline accumulation // J. Plant Physiol. 2008. V. 165. P. 588. https://doi.org/10.1016/j.jplph.2007.05.014
  3. Møller I.S., Tester M. Salinity tolerance of Arabidopsis: a good model for cereals? // Trends Plant Sci. 2007. V. 12. P. 534. https://doi.org/10.1016/j.tplants.2007.09.009
  4. Tester M., Danenport R. Na+ tolerance and Na+ transport in higher plants // Ann. Bot. 2003. V. 91. P. 503. https://doi.org/10.1093/aob/mcg058
  5. White P.J., Broadley M.R. Chloride in soils and its uptake and movement within the plant // Ann. Bot. 2001. V. 88. P. 967. https://doi.org/10.1006/anbo.2001.1540
  6. Balnokin Y.V., Kotov A.A., Myasoedov N.A., Khailova G.F., Kurkova E.B., Lun’kov R.V., Kotova L.M. Involvement of long-distance Na+ transport in maintaining water potential gradient in the medium-root-leaf system of a halophyte Suaeda altissima // Russ. J. Plant Physiol. 2005. V. 52. P. 489. https://doi.org/10.1007/s11183-005-0072-z
  7. Balnokin Y.V., Myasoedov N.A., Shamsutdinov Z.Sh., Shamsutdinov N.Z. Significance of Na+ and K+ for sustained hydration of organ tissues in ecologically distinct halophytes of the family Chenopodiaceae // Russ. J. Plant Physiol. 2005. V. 52. P. 779. https://doi.org/10.1007/s11183-005-0115-5
  8. Liang W., Ma X., Wan P., Liu L. Plant salt-tolerance mechanism: A review // Biochem. Biophys. Res. Commun. 2018. V. 495. P. 286. https://doi.org/10.1016/j.bbrc.2017.11.043
  9. Blumwald E. Sodium transport and salt tolerance in plants // Cur. Opinion Cell Biol. 2000. V. 12. P. 431. https://doi.org/10.1016/s0955-0674(00)00112-5
  10. Zhu J.-K. Plant salt tolerance // Trends Plant Sci. 2001. V. 6. P. 66. https://doi.org/10.1016/s1360-1385(00)01838-0
  11. Yeo A.R. Molecular biology of salt tolerance in the context of whole-plant physiology // J. Exp. Bot. 1998. V. 49. P. 915. https://doi.org/10.1093/jxb/49.323.915
  12. Bigot J., Binet P. Exchange capacity and parietal cation selectivity isolated from the roots of Cochleria anglica and Phaseolus vulgaris grown in media of different salinities // Can. J. Bot. 1986. V. 64. P. 955.
  13. Meychik N.R., Nikolaeva J.I., Yermakov I.P. Ion exchange properties of the root cell walls isolated from halophyte plants (Suaeda altissima L.) grown under conditions of different salinity // Plant Soil. 2005. V. 277. P. 163. https://doi.org/10.1023/A:1017936318435
  14. Meychik N.R., Nikolaeva Yu.I., Yermakov I.P. Ion-exchange properties of cell walls of Spinacia oleracea L. roots under different environmental salt conditions // Biochem. (Moscow). 2006. V. 71. P. 781. https://doi.org/10.1134/s000629790607011x
  15. Meychik N., Nikolaeva Yu., Kushunina M. The significance of ion exchange properties of plant root cell walls for nutrient and water uptake by plants // Plant Physiol. Biochem. 2021. V. 166. P. 140. https://doi.org/10.1016/j.plaphy.2021.05.048
  16. Robinson S.P., Dountov S.D. Potassium, sodium and chloride concentrations in leaves and isolated chloroplasts of the halophyte Suaeda australis R. // Aust. J. Plant Physiol. 1985. V. 12. P. 471.
  17. Meychik N.R., Yermakov I.P. Ion exchange properties of plant root cell walls // Plant Soil. 2001. V. 234. P. 181. https://doi.org/10.1023/A:1017936318435
  18. Meychik N.R., Yermakov I.P. A new approach to the investigation on the ionogenic groups of root cell walls // Plant Soil. 1999. V. 217. P. 257. https://doi.org/10.1023/A:1004675309128
  19. Gregor H.P., Luttinger L.D., Loeble E.M. Titration polyacrylic acid with quaternary ammonium bases // J. Amer. Chem. Soc. 1954. V. 76. P. 5879.
  20. Houston K., Tucker M.R., Chowdhury J., Shirley N., Little A. The plant cell wall: a complex and dynamic structure as revealed by the responses of genes under stress conditions // Front. Plant Sci. 2016. V. 7. P. 984. https://doi.org/10.3389/fpls.2016.00984
  21. Meychik N.R., Nikolaeva Yu.I., Yermakov I.P. Physiological response of halophyte (Suaeda altissima (L.) Pall.) and glycophyte (Spinacia oleracea L.) to salinity // Am. J. Plant Sci. 2013. V. 4. P. 427. https://doi.org/10.4236/ajps.2013.42A055
  22. Marschner H. Mineral nutrition of higher plants. San Diego: Academic Press, 1995. P. 862.
  23. Yan J., Liu Y., Yang L., He H., Huang Y., Fang L., Vibe Scheller H., Jiang M., Zhang A. Cell wall β-1,4-galactan regulated by the BPC1/BPC2-GALS1 module aggravates salt sensitivity in Arabidopsis thaliana // Mol. Plant. 2021. V. 14. P. 411. https://doi.org/10.1016/j.molp.2020.11.023
  24. Gigli-Bisceglia N., van Zelm E., Huo W., Lamers J., Testerink C. Arabidopsis root responses to salinity depend on pectin modification and cell wall sensing // Development. 2022. V. 149. dev200363. https://doi.org/10.1242/dev.200363
  25. Freundling C., Starrach N., Flach D., Gradmann D., Mayer W.-E. Cell walls as reservoirs of potassium ions for reversible volume changes of pulvinar motor cells during rhythmic leaf movements // Planta. 1988. V. 175. P. 193.
  26. Starrach N., Flach D., Mayer W.-E. Activity of fixed negative charges of isolated extensor cell walls of the laminar pulvinus of primary leaves of Phaseolus // J. Plant Physiol. 1985. V. 120. P. 441.
  27. Гельферих Ф. Иониты. Москва: Издательство Иностранной Литературы, 1962. 490 с.
  28. Richter C., Dainty J. Ion behavior in plant cell walls. Characterization of the Sphagnum russowii cell wall ion exchanger // Can. J. Bot. 1989. V. 67. P. 451.
  29. Либинсон Г.С. Физико-химические свойства карбоксильных катионитов. Москва: Наука, 1968. 182 с.
  30. Шатаева Л.А., Кузнецова Н.Н., Елькин Г.Е. Карбоксильные иониты в биологии. Ленинград: Наука, 1979. 286 с.
  31. Qiu Q.S., Barkla B.J., Vera-Estrella R., Zhu J.K., Schumaker K.S. Na+/H+ exchange activity in the plasma membrane of Arabidopsis // Plant Physiol. 2003. V. 132. P. 1041. https://doi.org/10.1104/pp.102.010421
  32. Amtmann A., Jelitto T.C., Sanders D. K+-selective inward-rectifying channel and apoplastic pH in barley roots // J. Plant Physiol. 1999. V. 119. P. 331.
  33. Yan F., Feuerle R., Schäffer S., Fortmeier H., Schubert S. Adaptation of active proton pumping and plasmalemma ATPase activity of corn roots to low root medium pH // J. Plant Physiol. 1998. V. 117. P. 311.
  34. Niu X., Narasimhan M.L., Salzman R.A., Bressan R.A., Hasegawa P.M. NaCl regulation of plasma membrane H+-ATPase gene expression in a glycophyte and a halophyte // J. Plant Physiol. 1993. V. 103. P. 713.
  35. Janicka-Russak M., Kabała K. The role of plasma membrane H+-ATPase in salinity stress of plants // Progress in Botany. Vol. 76 / Eds. U. Lüttge, W. Beyschlag. Springer. 2015. P. 77. https://doi.org/10.1007/978-3-319-08807-5_3

补充文件

附件文件
动作
1. JATS XML
2.

下载 (58KB)
3.

下载 (61KB)
4.

下载 (43KB)
5.

下载 (47KB)
6.

下载 (40KB)
7.

下载 (31KB)

版权所有 © Н.Р. Мейчик, Ю.И. Николаева, М.А. Кушунина, 2023

##common.cookie##