Взаимодействие растворимого и иммобилизованного марганец-стабилизирующего белка PsbO с ионами Mn и изолированным комплексом D1-D2-cyt b реакционного центра ФС II

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Исследовали взаимодействие водорастворимого и иммобилизованного на BrCN-активированной агарозе марганец-стабилизирующего белка PsbO с катионами Mn2+, Mn3+ и препаратами реакционного центра D1-D2- cyt b559 (РЦ) фотосистемы II (ФС II). Методом электрофореза в нативных условиях установлено образование димера и агрегированной формы белка PsbO в присутствии ионов Mn2+, Mg2+ и Fe2+. Димеризация PsbO наблюдалась после облучения УФ-светом препарата белка. Электростатическое взаимодействие иммобилизованного PsbO с РЦ возрастает в присутствии катионов Mn3+, связанных с белком, о чем свидетельствует увеличение концентрации CaCl2, необходимой для диссоциации комплекса PsbO-РЦ. Впервые показаны СОД-активность белка в ПААГ после электрофореза при инкубации геля с раствором катионов Mn3+ и тетразолий-редуктазная активность после электрофореза белка в смеси с препаратами кислород-выделяющего хлорофилл-белкового комплекса (КВК). Предполагается, что взаимодействие белка с ионами Mn в присутствии О2, а также кратковременное облучение УФ-светом восстанавливают тирозин и дисульфидную связь белка PsbO с образованием радикала тирозила и SH-групп, которые участвуют в редокс-реакциях с компонентами ЭТЦ. Взаимодействие PsbO с ионами Mn и УФ-светом в тилакоидах хлоропластов может регулировать его связывание с РЦ, изменять структурную организацию белка и способствовать его участию в альтернативных путях электронного транспорта при воздействии стрессовых факторов. Обсуждается гипотетическая схема взаимодействия иммобилизованного белка PsbO с ионами Mn и РЦ.

Об авторах

М. С. Христин

Институт фундаментальных проблем биологии Российской академии наук – обособленное подразделение Федерального исследовательского центра Пущинский научный центр биологических исследований Российской академии наук

Автор, ответственный за переписку.
Email: smolova_20@rambler.ru
Россия, Пущино

Т. Н. Смолова

Институт фундаментальных проблем биологии Российской академии наук – обособленное подразделение Федерального исследовательского центра Пущинский научный центр биологических исследований Российской академии наук

Email: smolova_20@rambler.ru
Россия, Пущино

Список литературы

  1. Kuwabara T., Murata N. An improved purification method and a further characterization of the 33-kilodalton protein of spinach chloroplast // BBA. 1982. V. 680. P. 210.
  2. Yamamoto Y., Doi M., Tamura N., Nishimura M. Released of polypeptides from highly active O2-evolving photosystem-2 preparation by Tris treatment // FEBS Letters. 1981. V. 133. P. 265.
  3. Miyao M., Murata N. The mode of binding of three extrinsic proteins of 33 kDa, 23 kDa and 18 kDa in the photosystem II complex of spinach // BBA. 1989. V. 977. P. 315. https://doi.org/10.1016/S0005-2728(89)80086-6
  4. Yamamoto Y., Shinkai H., Isogai Y., Matsuura K., Nishimura M. Isolation of an Mn-carrying 33-kDa protein from an oxygen-evolving photosystem-preparation by phase partitioning with butanol // FEBS Letters. 1984. V. 175. P. 429.
  5. Шутова Т.В., Христин М.С., Опанасенко В.К., Ананьев Г.М., Климов В.В. Протон-акцепторные свойства водорастворимого белка 33 кДа фотосистемы 2 шпината // Биологические мембраны. 1992. Т. 9. С. 836.
  6. Commet A., Boswell N., Yocum C.F., Popelka H. pH optimum of the photosystem II H2O oxidation reaction: effects of PsbO, the manganese-stabilizing protein, Cl– retention, and deprotonation of a component required for O2 evolution activity // Biochemistry. 2012. V. 51. P. 3808. https://doi.org/10.1021/bi201678m
  7. Pazos F., Heredia P., Valencia A., De las Rivas J. Threading Structural Model of the Manganese-Stabilizing Protein PsbO Reveals Presence of Two Possible b-Sandwich Domains // Proteins: Structure, Function, and Genetics. 2001. V. 45. P. 372.
  8. Berthold D.A., Babcock G.T., Yocum C.F. A highly resolved, oxygen-evolving photosystem II preparations from spinach thylakoids membranes, EPR and electron-transport properties // FEBS Lett. 1981. V. 134. P. 231.
  9. Khristin M.S., Nikitishena O.V., Smolova T.N., Zastrizhnaya O.M. Extraction of functionally active Photosystem II pigment-protein complexes from pea thylakoids and their purification on Sepharose DEAE 6B // Biol. Membr. (Moscow). 1997. V. 14. P. 133.
  10. Beauchamp C., Fridovich I. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels // Analytical Biochemistry. 1971. V. 44. P. 276. https://doi.org/10.1016/0003-2697(71)90370-8
  11. Malencik D.A., Anderson S.R. Dityrosine as a product of oxidative stress and fluorescent Oxidative Dimerization at Tyrosine by a Water-Soluble 4-Amino-1,8-naphthalimide // Chembiochem. 2021. V. 22. P. 2703. https://doi.org/10.1002/cbic.202100193
  12. Malencik D.A., Anderson S.R. Dityrosine formation in calmodulin: cross-linking and polymerization catalyzed by Arthromyces peroxidase // Biochemistry. 1996. V. 35. P. 4375. https://doi.org/10.1021/bi9526037
  13. Keyes E.D., Kauser K., Warner K.S., Roberts A.G. Photosensitized oxidative dimerization at tyrosine by a water-soluble 4-amino-1,8-naphthalimide // ChemBioChem. 2021. V. 22. P. 2703.
  14. Betts S.D., Ross J.R., Hall K.U., Pichersky E., Yocum C.F. Functional reconstitution of photosystem II with recombinant manganese-stabilizing proteins containing mutations that remove the disulfide bridge // BBA. 1996. V. 1274. P. 135. https://doi.org/10.1016/0005-2728(96)00023-0
  15. Cao P., Xie Y., Li M., Pan X., Zhang H., Zhao X., Su X., Cheng T., Chang W. Crystal structure analysis of extrinsic PsbP protein of photosystem II reveals a manganese-induced conformational change // Molecular Plant. 2015. V. 8. P. 664. https://doi.org/10.1016/j.molp.2015.01.002
  16. Lee B.-S., Lasanthi G.D., Jayathilaka P., Huang J.-S., Gupta S. One-dimensional and two-dimensional immobilized metal affinity electrophoresis // Methods Mol. Biol. 2012. V. 869. P. 275. https://doi.org/10.1007/978-1-61779-821-4_23
  17. Permyakov E.A., Permyakov S.E., Deikus G.Y., Morozova-Roche L.A., Grishchenko V.M., Kalinichenko L.P., Uversky V.N. Ultraviolet Illumination-induced Reduction of α-Lactalbumin Disulfide Bridges // Proteins: Structure, Function, and Genetics. 2003. V. 51. P. 498.
  18. Tanaka S., Kawata Y., Wada K., Hamaguchi K. Extrinsic 33-Kilodalton Protein of Spinach Oxygen-Evolving Complexes: Kinetic Studies of Folding and Disulfide Reduction // Biochemistry. 1989. V. 28. P. 7188.
  19. Miyao M., Murata N. Effect of urea on Photosystem II particles. Evidence for an essential role of the 33 kilodalton polypeptide in photosynthetic oxygen evolution // BBA. 1984. V. 765. P. 253.
  20. Kuwabara T., Miyao M., Murata T., Murata N. The function of 33-kDa protein in the photosynthetic oxygen-evolution system studied by reconstitution experiments // BBA. 1985. V. 806. P. 283. https://doi.org/10.1016/0005-2728(85)90107-0
  21. Hutchison R.S., Steenhuis J.J., Yocum Ch.F., Razeghifard M.R., Barry B.A. Deprotonation of the 33-kDa, extrinsic, manganese-stabilizing subunit accompanies photooxidation of manganese in photosystem II // J. Biol. Chem. 1999. V. 274. P. 31987.
  22. Zhang F., Gao J., Weng J., Tan C., Ruan K., Xu Ch., Jiang D. Structural and Functional Differentiation of Three Groups of Tyrosine Residues by Acetylation of N-Acetylimidazole in Manganese Stabilizing Protein // Biochemistry. 2005. V. 44. P. 719. https://doi.org/10.1021/bi0483559
  23. Seidler A. Intermolecular and intramolecular interactions of the 33-kDa protein in photosystem II // Eur. J. Biochem. 1996. V. 242. P. 485.
  24. Isogai Y., Yamamoto Y., Yamamoto Y., Nishimura M. Isolation of photosystem II reaction center complex by affinity chromatography with the peripheral 33-kDa polypeptide as ligand // FEBS Letters. 1987. V. 224. P. 71.
  25. Gounaris K., Chapman D.J., Barber J. The interaction between the 33 kDa manganese-stabilising protein and the D1/D2 cytochrome b-559 complex // FEBS Letters. 1988. V. 234. P. 374.
  26. Lorch S., Capponi S., Pieront F., Bondar A.N. Dynamic Carboxylate/Water Networks on the Surface of the PsbO Subunit of Photosystem II // J. Phys. Chem. B. 2015. V. 119. P. 12172. https://doi.org/10.1021/acs.jpcb.5b06594
  27. Guerra F., Siemers M., Mielack C., Bondar A.N. Dynamics of Long-Distance Hydrogen-Bond Networks in Photosystem II // J. Phys. Chem. B. 2018. V. 122. P. 4625.
  28. Shitov A.V., Pobeguts O.V., Smolova T.N., Allakhverdiev S.I., Klimov V.V. Manganese-dependent carboanhydrase activity of photosystem II proteins // Biochemistry (Moscow). 2009. V. 74. P. 509.
  29. Lu Y.-K., Theg S.M., Stemler A.J. Carbonic Anhydrase Activity of the Photosystem II OEC33 Protein from Pea // Plant Cell Physiol. 2005. V. 46. P. 1944. https://doi.org/10.1093/pcp/pci209
  30. Liu K., Sun J., Song Y., Liu B., Xu Y., Zhang Sh., Tian Q., Liu Y. Superoxide, hydrogen peroxide and hydroxyl radical in D1/D2/cytochrome b-559 Photosystem II reaction center complex // Photosynth. Res. 2004. V. 81. P. 41.
  31. Das A.B., Nagy P., Abbott H.F., Winterbourn Ch.C., Kettle A.J. Reactions of superoxide with the myoglobin tyrosyl radical // Free Radical Biology and Medicine. 2010. V. 48. P. 1540.
  32. Offenbacher A.R., Polander B.C., Barry B.A. An Intrinsically Disordered Photosystem II Subunit, PsbO, Provides a Structural Template and a Sensor of the Hydrogen-Bonding Network in Photosynthetic Water Oxidation // J. Biol. Chem. 2013. V. 288. P. 29056. https://doi.org/10.1074/jbc.M113.487561
  33. Nagao R., Suzuki T., Okumura A., Niikura A., Iwai M., Dohmae N., Tomo T., Shen J.R., Ikeuchi M., Enami I. Topological Analysis of the Extrinsic PsbO, PsbP and PsbQ Proteins in a Green Algal PSII Complex by Cross-Linking with a Water-Soluble Carbodiimide // Plant Cell Physiol. 2010. V. 51. P. 718. https://doi.org/10.1093/pcp/pcq042
  34. Leuschner C., Bricker T.M. Interaction of the 33 kDa Extrinsic Protein with Photosystem II:  Rebinding of the 33 kDa Extrinsic Protein to Photosystem II Membranes Which Contain Four, Two, or Zero Manganese per Photosystem II Reaction Center // Biochemistry. 1996. V. 35. P. 4551. https://doi.org/10.1021/bi9522615
  35. Semin B.K., Podkovirina T.E., Davletshina L.N., Timofeev K.N. Ivanov I.I., Rubin A.B. The extrinsic PsbO protein modulates the oxidation/reduction rate of the exogenous Mn cation at the high-affinity Mn-binding site of Mn-depleted PSII membranes // J. Bioenerg. Biomembr. 2015. V. 47. P. 361. https://doi.org/10.1007/s10863-015-9618-8
  36. Odom W., Bricker T.M. Interaction of CPa-1 with the manganese-stabilizing protein of Photosystem II: identification of domains cross-linked by 1-ethyl-3-[3-(dimethylamino) propyl] carbodiimide // Biochemistry. 1992. V. 31 P. 5616.
  37. Murakami R., Ifuku K., Takabayashi A., Shikanai T., Endo T., Sato F. Functional dissection of two Arabidopsis PsbO proteins PsbO1 and PsbO2 // FEBS J. 2005. V. 272. P. 2165.
  38. Raval M.K., Ramaswamy N.K., Nair P.M. Mechanism of Mn II oxidation by the extrinsic 33 kDa protein of photosystem II // Plant Science. 1994. V. 98. P. 141.
  39. Gerland L., Friedrich D., Hopf L., Donovan E.J., Wallmann A., Erdmann N., Diehl A., Bommer M., Buzar K., Ibrahim M., Schmieder P., Dobbek H., Zouni A., Bondar A.-N., Dau H., Oschkinat H. pH-Dependent Protonation of Surface Carboxylates in PsbO Enables Local Buffering and Triggers Structural Changes // Chembiochem. 2020. V. 21. P. 1597. https://doi.org/10.1002/cbic.201900739
  40. Commet A., Boswell N., Yocum C.F., Popelka H. pH Optimum of the Photosystem II H2O Oxidation Reaction: Effects of PsbO, the Manganese-Stabilizing Protein, Cl− Retention, and Deprotonation of a Component Required for O2 Evolution Activity // Biochemistry. 2012. V. 51. P. 3808. https://doi.org/10.1021/bi201678m

Дополнительные файлы


© М.С. Христин, Т.Н. Смолова, 2023

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах