Cytogenetic and Biochemical Characteristics of Callus Pinus sylvestris L.

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

A comprehensive assessment was carried out of the changes occurring during the darkening of the callus obtained from vegetative buds of 40-year-old Scots pine trees Pinus sylvestris L. Based on biometric assessment of callus (intensity of callus formation, proportion of light callus, callus mass) from 32 analyzed trees (16 genotypes represented by two clones), two genotypes with high callus-forming ability were singled out. Analysis of mitosis showed that, although the proportion of aberrant cells in the callus does not exceed the rate of spontaneous mutation for P. sylvestris, the range of violations at the stage of meta-, ana-, and telophase in the callus culture was wider compared to that in the seed progeny of the same pine trees. Darkening of the callus was accompanied by a decrease in sucrose metabolism in the cell (decrease in cytoplasmic, vacuolar invertase and sucrose synthase) and a significant decrease in peroxidase activity. At the same time, the activity of apoplast invertase was maintained at a constant level. The activity of superoxide dismutase, catalase, polyphenol oxidase, and phenylalanine ammonia lyase, on the contrary, was higher in dark callus. The possible use of the studied enzymes as biochemical markers of the transition to darkening callus pine crops is discussed.

Авторлар туралы

N. Galibina

The Forest Institute, Separate Subdivision of the Federal State Budgetary Institution of Science of the Federal Research Center Karelian Scientific Center, Russian Academy of Sciences

Email: galibina@krc.karelia.ru
Ресей, Petrozavodsk

M. Ershova

Federal Research Center Karelian Scientific Center, Russian Academy of Sciences

Email: galibina@krc.karelia.ru
Ресей, Petrozavodsk

R. Ignatenko

Federal Research Center Karelian Scientific Center, Russian Academy of Sciences

Email: galibina@krc.karelia.ru
Ресей, Petrozavodsk

K. Nikerova

The Forest Institute, Separate Subdivision of the Federal State Budgetary Institution of Science of the Federal Research Center Karelian Scientific Center, Russian Academy of Sciences

Email: galibina@krc.karelia.ru
Ресей, Petrozavodsk

I. Sofronova

The Forest Institute, Separate Subdivision of the Federal State Budgetary Institution of Science of the Federal Research Center Karelian Scientific Center, Russian Academy of Sciences

Email: galibina@krc.karelia.ru
Ресей, Petrozavodsk

M. Borodina

The Forest Institute, Separate Subdivision of the Federal State Budgetary Institution of Science of the Federal Research Center Karelian Scientific Center, Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: galibina@krc.karelia.ru
Ресей, Petrozavodsk

Әдебиет тізімі

  1. Tang W., Newton R.J. Increase of polyphenol oxidase and decrease of polyamines correlate with tissue browning in Virginia pine (Pinus virginiana Mill.) // Plant Sci. 2004. V. 167. P. 621. https://doi.org/10.1016/j.plantsci.2004.05.024
  2. Chugh S., Guha S., Rao I.U. Micropropagation of orchids: a review on the potential of different explants // Sci. Hortic. 2009. V. 122. P. 507. https://doi.org/10.1016/j.scienta.2009.07.016
  3. Mondal T., Aditya S., Banerjee N. In vitro axillary shoot regeneration and direct protocorm-like body induction from a shoot tips of Doritis pulcherrima Lindl. // Plant tissue culture and biotechnology. 2013. V. 23. №. 2. P. 251. https://doi.org/10.3329/ptcb.v23i2.17526
  4. Laukkanen H., Häggman H., Kontunen-Soppela S., Hohtola A. Tissue browning of in vitro cultures of Scots pine: role of peroxidase and polyphenol oxidase // Physiol. Plant. 1999. V. 106. P. 337. https://doi.org/10.1034/j.1399-3054.1999.106312.x
  5. Laukkanen H., Rautiainen L., Taulavuori E., Hohtola A. Changes in cellular structures and enzymatic activities during browning of Scots pine callus derived from mature buds // Tree Physiol. 2000. V. 20. P 467. https://doi.org/10.1093/treephys/20.7.467
  6. Keinonen-Mettälä K., Jalonen P., Eurola P., Arnold S., Weissenberg K. Somatic embryogenesis of Pinus sylvestris // Scand. J. For. Res. 1996. V. 11. C. 242. https://doi.org/10.1080/02827589609382933
  7. Шуклина А.С., Третьякова И.Н. Соматический эмбриогенез видов рода Pinus в культуре in vitro // Успехи современной биологии 2019. Т. 139. С. 184. https://doi.org/10.1134/S004213241902008X
  8. Tret’yakova I.N., Voroshilova E.V., Shuvaev D.N. Callusogenesis and somatic embryogenesis induction in hybrid embryos from the seeds of Pinus sibirica // Russ. J. Plant Physiol. 2014. V. 61. P. 274. https://doi.org/10.1134/S1021443714020162
  9. Trontin J.-F., Aronen T., Hargreaves C., Montalbán I.A., Moncaleán P., Reeves C., Quoniou S., Lelu-Walter M.-A., Klimaszewska K. International effort to induce somatic embryogenesis in adult pine trees // Vegetative Propagation of Forest Trees, National Institute of Forest Science Institute (NIFoS), 2016. hal-02800018f
  10. Горячкина О.В., Пак М.Э., Третьякова И.Н. Цитогенетические особенности эмбриогенных клеточных линий Larix sibirica Ledeb. в культуре in vitro // Вестник Томского гос. ун-та. Биология. 2017. № 39. https://doi.org/10.17223/19988591/39/9
  11. Шмаков В.Н., Константинов Ю.М. Использование культуры клеток in vitrо для изучения генетического разнообразия у Pinus sibirica Du Tour в условиях лесосеменной плантации // Сибирский экологический журнал. 2004. Т. 11. № 2. С. 149.
  12. Duan Y., Su Y., Chao E., Zhang G., Zhao F., Xue T., Sheng J.W., Teng J., Xue J. Callus-mediated plant regeneration in Isodon amethystoides using young seedling leaves as starting materials // Plant Cell, Tissue Organ Cult. 2019. V. 136. P. 247. https://doi.org/10.1007/s11240-018-1510-x
  13. Gauillard F., Richard-Forget F. Polyphenoloxidases from Williams Pear (Pyrus communis L, cv Williams): activation, purification and some properties // J. Sci. Food Agric. 1997. V. 74. P. 49. https://doi.org/10.1002/(SICI)1097-0010(199705)74:1< 49::AID-JSFA769>3.0.CO;2-K
  14. Yingsanga P., Srilaong V., Kanlayanarat S., Noichinda S., McGlasson W. Relationship between browning and related enzymes (PAL, PPO and POD) in rambutan fruit (Nephelium lappaceum Linn.) cvs. Rongrien and See-Chompoo // Postharvest Biol. Technol. 2008. V. 50. P. 164. https://doi.org/10.1016/j.postharvbio.2008.05.004
  15. Dixon R.A., Lamb C.J., Masoud S., Sewalt V.J., Paiva N.L. Metabolic engineering: prospects for crop improvement through the genetic manipulation of phenylpropanoid biosynthesis and defense responses – a review // Gene. 1996. V. 179. P. 61. https://doi.org/10.1016/S0378-1119(96)00327-7
  16. Koch K. Sucrose metabolism: regulatory mechanisms and pivotal roles in sugar sensing and plant development // Curr. Opin. Plant Biol. 2004. V. 7. P. 235. https://doi.org/10.1016/j.pbi.2004.03.01
  17. Ruan Y.L., Llewellyn D.J., Furbank R.T. Suppression of sucrose synthase gene expression represses cotton fiber cell initiation, elongation, and seed development // Plant Cell. 2003. V. 15. P. 952. https://doi.org/10.1105/tpc.010108
  18. Iraqi D., Tremblay F.M. Analysis of carbohydrate metabolism enzymes and cellular contents of sugars and proteins during spruce somatic embryogenesis suggests a regulatory role of exogenous sucrose in embryo development // J. Exp. Bot. 2001. V. 52. P. 2301. https://doi.org/10.1093/jexbot/52.365.2301
  19. Gutierrez-Miceli F.A., Rodriguez-Mendiola M., Ochoa-Alejo N., Mendez-Salas R., Arias-Castro C., Dendooven L. Sucrose accumulation and enzyme activities in callus culture of sugarcane // Biol. Plant. 2005. V. 49. P. 475. https://doi.org/10.1007/s10535-005-0034-5
  20. Hohtola A. Seasonal changes in explant viability and contamination of tissue cultures from mature Scots pine // Plant Cell, Tissue Organ Cult. 1988. V. 15. C. 211. https://doi.org/10.1007/BF00033645
  21. Машкина О.С., Калаев В.Н., Мурая Л.С., Леликова Е.С. Цитогенетические реакции семенного потомства сосны обыкновенной на комбинированное антропогенное загрязнение в районе Новолипецкого металлургического комбината // Экол. генетика. 2009. Т. 7. С. 17. https://doi.org/10.17816/ecogen7317-29
  22. Nikerova K.M., Galibina N.A., Moshchenskaya Y.L., Tarelkina T.V., Borodina M.N., Sofronova I.N., Semenova L.I., Ivanova D.S., Novitskaya L.L. Upregulation of antioxidant enzymes is a biochemical indicator of abnormal xylogenesis in Karelian birch // Trees. 2022. V. 36. P. 517. https://doi.org/10.1007/s00468-021-02225-5
  23. Nguyen Q.A., Luan S., Wi S.G., Bae H., Lee D.-S., Bae H.-J. Pronounced phenotypic changes in transgenic tobacco plants overexpressing sucrose synthase may reveal a novel sugar signaling pathway // Front. Plant Sci. 2016. V. 6. P. 1. https://doi.org/10.3389/fpls.2015.01216
  24. Ghorbanpour M., Hadian J. Multi-walled carbon nanotubes stimulate callus induction, secondary metabolites biosynthesis and antioxidant capacity in medicinal plant Satureja khuzestanica grown in vitro // Carbon. 2015. V. 94. P. 749. https://doi.org/10.1016/j.carbon.2015.07.056
  25. He Y., Guo X., Lu R., Niu B., Pasapula V., Hou P., Cai F., Xu Y., Chen F. Changes in morphology and biochemical indices in browning callus derived from Jatropha curcas hypocotyls // Plant Cell, Tissue Organ Cult. 2009. V. 98. P. 11. https://doi.org/10.1007/s11240-009-9533-y
  26. Butorina A.K., Kalaev V.N., Mironov A.E. A., Smorodinova V.A., Mazurova I.E., Doroshev S.A., Sen’kevich E.V. Cytogenetic variation in populations of Scotch pine // Russ. J. Ecol. 2001. V. 32. P. 198. https://doi.org/10.1023/A:1011366328809
  27. Игнатенко Р.В., Ершова М.А., Галибина Н.А., Раевский Б.В. Цитогенетическая характеристика семенного потомства клонов плюсовых деревьев сосны обыкновенной в Карелии // Лесной журнал. 2022. № 1. С. 9. https://doi.org/10.37482/0536-1036-2022-1-9-22
  28. Колупаев Ю.Е. Антиоксиданты растительной клетки, их роль в АФК-сигналинге и устойчивости растений // Успехи современной биологии. 2016. Т. 136. С. 181.
  29. Apel K., Hirt H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction // Annu. Rev. Plant Biol. 2004. V. 55. P. 373. https://doi.org/10.1146/annurev.arplant.55.031903.141701
  30. Mittler R. ROS are good // Trends in plant science. 2017. V. 2. P. 11. https://doi.org/10.1016/j.tplants.2016.08.002
  31. Zeng J., Dong Z., Wu H., Tian Z., Zhao Z. Redox regulation of plant stem cell fate // The EMBO Journal. 2017. V. 36. 19. P. 2844. https://doi.org/10.15252/embj.201695955
  32. de Marco A., Roubelakis-Angelakis K.A. The complexity of enzymic control of hydrogen peroxide concentration may affect the regeneration potential of plant protoplasts // Plant Physiol. 1996. V. 110. P. 137. https://doi.org/10.1104/pp.110.1.13
  33. Pradedova E.V., Isheeva O.D., Salyaev R.K. Classification of the antioxidant defense system as the ground for reasonable organization of experimental studies of the oxidative stress in plants // Russ. J. Plant Physiol. 2011. T. 58. P. 210. https://doi.org/10.1134/S1021443711020166
  34. Jajic I., Sarna T., Strzalka K. Senescence, stress, and reactive oxygen species // Plants. 2015. V 4. P. 393. https://doi.org/10.3390/plants4030393
  35. Tsukagoshi H., Busch W., Benfey P.N. Transcriptional regulation of ROS controls transition from proliferation to differentiation in the root // Cell. 2010. V. 143. P. 606. https://doi.org/10.1016/j.cell.2010.10.020
  36. Dat J., Vandenabeele S., Vranová E., Van Montagu M., Inzé D., Van Breusegem F. Dual action of the active oxygen species during plant stress responses // Cell. Mol. Life Sci. 2000. V. 57. P. 779. https://doi.org/10.1007/s000180050041
  37. Messner B., Boll M., Berndt J. L-phenylalanine ammonia-lyase in suspension culture cells of spruce (Picea abies) // Plant Cell, Tissue Organ Cult. 1991. V. 27. P. 267. https://doi.org/10.1007/BF00157590
  38. Газарян И.Г., Хушпульян Д.М., Тишков В.И. Особенности структуры и механизма действия пероксидаз растений // Успехи биол. химии. 2006. Т. 46. С. 303.
  39. Tanaka Y., Uritani I. Purification and properties of phenylalanine ammonia-lyase in cut-injured sweet potato // J. Biochem. 1977. V. 81. P. 963. https://doi.org/10.1093/oxfordjournals.jbchem.a131562
  40. Ling A.C.K., Yap C., Shaib J.M., Vilasini P. Induction and morphogenesis of Phalaenopsis callus // J. Trop. Agric. Food Sci. 2007. V. 35. P. 147.

Қосымша файлдар


© Н.А. Галибина, М.А. Ершова, Р.В. Игнатенко, К.М. Никерова, И.Н. Софронова, М.Н. Бородина, 2023

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>