Early Blight Resistance of Transgenic Potato Plants Expressingthe ProSmAMP1 Gene for Antimicrobial Peptides under the Control of a Light-Inducible Cab Promoter

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The genome of Stellaria media contains a gene family for hevein-like antimicrobial peptides, some of which are known to encode two peptides released from the translation product as a result of post-translational proteolysis. These peptides have been shown to inhibit the growth of bacteria and fungi, including potato pathogens Alternaria solani and Alternaria alternata. One of these genes, ProSmAMP1, was introduced into the potato genome under the control of the light-inducible promoter of Cab gene from common wheat. The resulting transgenic lines expressed ProSmAMP1 mRNA during several vegetative passages, and their resistance to early blight was assessed by several indicators of detached leaf infection, with plants having the highest expression of the transgene also showing the highest resistance.

About the authors

D. V. Beliaev

Timiryazev Institute of Plant Physiology, Russian Academy of Sciences

Author for correspondence.
Email: bdv@ippras.ru
Russian Federation, Moscow

N. O. Yourieva

Timiryazev Institute of Plant Physiology, Russian Academy of Sciences

Email: bdv@ippras.ru
Russian Federation, Moscow

D. V. Tereshonok

Timiryazev Institute of Plant Physiology, Russian Academy of Sciences

Email: bdv@ippras.ru
Russian Federation, Moscow

M. K. Derevyagina

Russian Potato Research Centre

Email: bdv@ippras.ru
Russian Federation, Kraskovo

A. A. Meleshin

Russian Potato Research Centre

Email: bdv@ippras.ru
Russian Federation, Kraskovo

References

  1. Schepers H., Hausladen H., Hansen J.G. Epidemics and control of early & late blight, 2017 & 2018 in Europe // Proceedings of the seventeenth EuroBlight Workshop. 2019. V. 19. P. 11. https://doi.org/https://agro.au.dk/fileadmin/euroblight/Workshops/Proceedings/Special_Report_19_Totaal_LR.pdf
  2. Gravesen S. Fungi as a cause of allergic disease // Allergy. 1979. V. 34. P. 135. https://doi.org/10.1111/J.1398-9995.1979.TB01562.X
  3. Tsedaley B. Review on early blight (Alternaria spp.) of potato disease and its management options // J. Biol. Agricul. Healthcare. 2014. V. 4 P. 191. https://www.iiste. org/Journals/index.php/JBAH/article/view/18650
  4. Adolf B., Andrade-Piedra J., Bittara Molina F., Przetakiewicz J., Hausladen H., Kromann P., Lees A., Lindqvist-Kreuze H., Perez W., Secor G.A. Fungal, oomycete, and plasmodiophorid diseases of potato // The Potato Crop: Its Agricultural, Nutritional and Social Contribution to Humankind. 2019. V. 9. P. 307. https://doi.org/10.1007/978-3-030-28683-5_9
  5. Van Der Waals J.E., Korsten L., Aveling T.A.S. A review of early blight of potato // African Plant Protection. 2001. V. 7. P. 1
  6. Kumar Chaudhary A., Yadav J., Kumar Gupta A., Gupta K. Integrated disease management of early blight (Alternaria Solani) of potato // Tropical Agrobiodiversity. 2021. V. 2. P. 77. https://doi.org/10.26480/trab.02.2021.77.81
  7. Shinde B.A., Dholakia B.B., Hussain K., Panda S., Meir S., Rogachev I., Aharoni A., Giri A.P., Kamble A.C. Dynamic metabolic reprogramming of steroidal glycol-alkaloid and phenylpropanoid biosynthesis may impart early blight resistance in wild tomato (Solanum arcanum Peralta) // Plant Mol. Biol. 2017. V. 95. P. 411. https://doi.org/10.1007/S11103-017-0660-2/FIGURES/7
  8. Roddick J.G., Rijnenberg A.L. Effect of steroidal glycoalkaloids of the potato on the permeability of liposome membranes // Physiol. Plant. 1986. V. 68. P. 436. https://doi.org/10.1111/j.1399-3054.1986.tb03378.x
  9. Yamunarani K., Jaganathan R., Bhaskaran R., Govindaraju P., Velazhahan R. Induction of early blight resistance in tomato by Quercus infectoria gall extract in association with accumulation of phenolics and defense-related enzymes // Acta Physiol. Plant. 2004. V. 26. P. 281. https://doi.org/10.1007/S11738-004-0018-7
  10. Johansen T.J., Mølmann J.A.B. Seed potato performance after storage in light at elevated temperatures // Potato Research. 2018. V. 61. P. 133. https://doi.org/10.1007/S11540-018-9363-6/FIGURES/3
  11. Henrique S.S.D., Zambolim L., Rodrigues F.A., Paul P.A., Pádua J.G., Ribeiro J.I. Field resistance of potato cultivars to foliar early blight and its relationship with foliage maturity and tuber skin types // Tropical Plant Pathology. 2014. V. 39. P. 294
  12. Busnello F.J., Boff M.I.C., Agostinetto L., Souza Z. da S., Boff P. Potato genotypes reaction to early blight and late blight in organic cultivation // Ciência Rural. 2019. V. 49. https://doi.org/10.1590/0103-8478CR20180469
  13. Weber B.N., Jansky S.H. Resistance to Alternaria solani in Hybrids Between a Solanum tuberosum Haploid and S. raphanifolium // Phytopathology. 2012. V. 102. P. 214. https://doi.org/10.1094/PHYTO-05-11-0146
  14. Odintsova T.I., Slezina M.P., Istomina E.A., Korostyleva T.V., Kasianov A.S., Kovtun A.S., Makeev V.J., Shcherbakova L.A., Kudryavtsev A.M. Defensin-like peptides in wheat analyzed by whole-transcriptome sequencing: A focus on structural diversity and role in induced resistance // Peer J. 2019. V. 2019. P. e6125. https://doi.org/10.7717/PEERJ.6125/SUPP-16
  15. Toufiq N., Tabassum B., Bhatti M.U., Khan A., Tariq M., Shahid N., Nasir I.A., Husnain T. Improved antifungal activity of barley derived chitinase I gene that overexpress a 32kDa recombinant chitinase in Escherichia coli host // Braz. J. Microbiol. 2018. V. 49. P. 414. https://doi.org/10.1016/J.BJM.2017.05.007
  16. Moravčíková J., Matušíková I., Libantová J., Bauer M., Mlynárová L. Expression of a cucumber class III chitinase and Nicotiana plumbaginifoliaclass I glucanase genes in transgenic potato plants // Plant Cell, Tissue Organ Cult. 2004. V. 79. P. 161. https://doi.org/10.1007/S11240-004-0656-X
  17. Islam K.T., Velivelli S.L.S., Berg R.H., Oakley B., Shah D.M. A novel bi-domain plant defensin MtDef5 with potent broad-spectrum antifungal activity binds to multiple phospholipids and forms oligomers // Sci. Rep. 2017. https://doi.org/10.1038/s41598-017-16508-w
  18. Huang X., Xie W.J., Gong Z.Z. Characteristics and antifungal activity of a chitin binding protein from Ginkgo biloba // FEBS Letters. 2000. https://doi.org/10.1016/S0014-5793(00)01834-2
  19. Vasilchenko A.S., Smirnov A.N., Zavriev S.K., Grishin E.V., Vasilchenko A.V., Rogozhin E.A. Novel thionins from black seed (Nigella sativa L.) demonstrate antimicrobial activity // International Journal of Peptide Research and Therapeutics. 2017. V. 23. P. 171. https://doi.org/10.1007/S10989-016-9549-1/FIGURES/5
  20. Mithril C., Dragsted L.O. Safety evaluation of some wild plants in the New Nordic Diet // Food Chem. Toxicol. 2012. V. 50. P. 4461. https://doi.org/10.1016/J.FCT.2012.09.016
  21. Yilmaz S., Ergün S. Chickweed (Stellaria media) leaf meal as a feed ingredient for tilapia (Oreochromis mossambicus) // J. Appl. Aquac. 2013. V. 25. P. 329. https://doi.org/10.1080/10454438.2013.851531
  22. Rogowska M., Lenart M., Srečec S., Ziaja M., Parzonko A., Bazylko A. Chemical composition, antioxidative and enzyme inhibition activities of chickweed herb (Stelaria media L., Vill.) ethanolic and aqueous extracts // Industrial Crops and Products. 2017. V. 97. P. 448. https://doi.org/10.1016/J.INDCROP.2016.12.058
  23. Shukurov R.R., Voblikova V.D., Nikonorova A.K., Komakhin R.A., Komakhina V.V., Egorov T.A., Grishin E.V., Babakov A.V. Transformation of tobacco and Arabidopsis plants with Stellaria media genes encoding novel hevein-like peptides increases their resistance to fungal pathogens // Transgenic Res. 2012. V. 21. P. 313. https://doi.org/10.1007/s11248-011-9534-6
  24. Vetchinkina E.M., Komakhina V.V., Vysotskii D.A., Zaitsev D.V., Smirnov A.N., Babakov A.V., Komakhin R.A. Expression of plant antimicrobial peptide pro-SmAMP2 gene increases resistance of transgenic potato plants to Alternaria and Fusarium pathogens // Russ. J. Genet. 2016. V. 52. P. 939. https://doi.org/10.1134/s1022795416080147
  25. Beliaev D.V., Yuorieva N.O., Tereshonok D.V., Tashlieva I.I., Derevyagina M.K., Meleshin A.A., Rogozhin E.A., Kozlov S.A. High resistance of potato to early blight is achieved by expression of the Pro-SmAMP1 gene for hevein-like antimicrobial peptides from common chickweed (Stellaria media) // Plants. 2021. V. 10. P. 1395. https://doi.org/10.3390/PLANTS10071395
  26. Muhammad A.F., Naz F., Irshad G. Important fungal diseases of potato and their management-a brief review // Mycopath. 2013. V. 11. P. 45.
  27. Timerbaev V., Dolgov S. Functional characterization of a strong promoter of the early light-inducible protein gene from tomato // Planta. 2019. V. 250. P. 1307. https://doi.org/10.1007/S00425-019-03227-X
  28. Nagy F., Boutry M., Hsu M.Y., Wong M., Chua N.H. The 5′-proximal region of the wheat Cab-1 gene contains a 268-bp enhancer-like sequence for phytochrome response. // EMBO J. 1987. V. 6. P. 2537. https://doi.org/10.1002/J.1460-2075.1987.TB02541.X
  29. An G. Integrated regulation of the photosynthetic gene family from Arabidopsis thaliana in transformed tobacco cells // Mol. General Genet. 1987. V. 207. P. 210. https://doi.org/10.1007/BF00331580
  30. Bevan M. Binary agrobacterium vectors for plant transformation // Nucleic acids research. 1984. V. 12. P. 8711. https://doi.org/10.1093/NAR/12.22.8711
  31. Banerjee A.K., Prat S., Hannapel D.J. Efficient production of transgenic potato (S. tuberosum L. ssp. andigena) plants via Agrobacterium tumefaciens ‒ mediated transformation // Plant Sci. 2006. V. 170. P. 732. https://doi.org/10.1016/j.plantsci.2005.11.007
  32. Lazo G.R., Stein P.A., Ludwig R.A. A DNA transformation–competent Arabidopsis genomic library in Agrobacterium // BioTechnol. 1991. V. 9. P. 963. https://doi.org/10.1038/nbt1091-963
  33. Дерябин А.Н., Юрьева Н.О. Образование и морфометрические показатели микроклубней картофеля in vitro при разном составе сахаров в среде // Сельскохозяйственная биология. 2011. Т. 1. С. 54. http://www.agrobiology.ru/1-2011deryabin-eng.html
  34. Yuorieva N.O., Voronkov A.S., Tereshonok D.V., Osipova E.S., Platonova E.V., Belyaev D.V. An assay for express screening of potato transformants by GFP fluorescence // Moscow Univ. Biol. Sci. Bull. 2018. V. 73. P. 69. https://doi.org/10.3103/s0096392518020086
  35. Nicot N., Hausman J.F., Hoffmann L., Evers D. Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress // J. Exp. Bot. 2005. V. 56. P. 2907. https://doi.org/10.1093/JXB/ERI285
  36. Tzfira T., Li J., Lacroix B., Citovsky V. Agrobacterium T-DNA integration: molecules and models // Trends Genet. 2004. V. 20. P. 375. https://doi.org/10.1016/J.TIG.2004.06.004
  37. Cluster P.D., O’Dell M., Metzlaff M., Flavell R.B. Details of T-DNA structural organization from a transgenic Petunia population exhibiting co-suppression // Plant Mol. Biol. 1996. V. 32. P. 1197. https://doi.org/10.1007/BF00041406
  38. Escoubas J.M., Lomas M., LaRoche J., Falkowski P.G. Light intensity regulation of cab gene transcription is signaled by the redox state of the plastoquinone pool. // Proc. Natl. Acad. Sci. 1995. V. 92. P. 10237. https://doi.org/10.1073/PNAS.92.22.10237
  39. Czajka K.M., Nkongolo K. Transcriptome analysis of trembling aspen (Populus tremuloides) under nickel stress // PLOS ONE. 2022. V. 17. P. e0274740. https://doi.org/10.1371/JOURNAL.PONE.0274740
  40. Daley M., Knauf V.C., Summerfelt K.R., Turner J.C. C-o-transformation with one Agrobacterium tumefaciens strain containing two binary plasmids as a method for producing marker-free transgenic plants // Plant Cell Rep. 1998. V. 17. P. 489. https://doi.org/10.1007/S002990050430

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (54KB)
3.

Download (77KB)
4.

Download (43KB)
5.

Download (1MB)

Copyright (c) 2023 Д.В. Беляев, Н.О. Юрьева, Д.В. Терешонок, М.К. Деревягина, А.А. Мелешин

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies