Assessment Possibility of Controlling Structure Formation by Changing the Technological Parameters LPBF Process

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Abstract

—In this paper, the possibility of creating a controlled structure by varying the parameters of laser powder bed fusion (LPBF) process on the example of austenitic stainless steels is studied. Based on the study of the structure of experimental samples, the influence of a combination of various technological parameters that make up the scanning strategy when preparing a 3D-model for the LPBF process on the processes of structure formation is shown. The possibility of forming elements with different structures within one part during its manufacture by the LPBF method by changing the technological parameters of the process that make up the scanning strategy is shown. It is noted that the use of 3D-models identical in the geometry formed, but different in the strategy of scanning with a laser beam directly in the process of laser fusion, leads to the formation of a fundamentally different structure of the created sample, since the formation of the microstructure is strongly influenced by the conditions of metal crystallization, which directly depend on the scanning strategy.

Sobre autores

I. Shakirov

NRC “Kurchatov Institute” – CRISM “Prometey”

Autor responsável pela correspondência
Email: i.v.shakirov@yandex.ru
Russia, 191015, St. Petersburg

A. Olisov

Tomsk State University

Email: i.v.shakirov@yandex.ru
Russia, 634050, Tomsk

P. Kuznetsov

NRC “Kurchatov Institute” – CRISM “Prometey”

Email: i.v.shakirov@yandex.ru
Russia, 191015, St. Petersburg

A. Zhukov

NRC “Kurchatov Institute” – CRISM “Prometey”

Email: i.v.shakirov@yandex.ru
Russia, 191015, St. Petersburg

Bibliografia

  1. Agrawal A.K., Bellefon G.M., Thoma D. High-throughput experimentation for microstructural design in additively manufactured 316L stainless steel // Mater. Sci. Eng.: A. 2020. V. 793. P. 139841. https://doi.org/10.1016/j.msea.2020.139841
  2. Kuznetsov P.A., Shakirov I.V., Mozhayko A.A., Zhukov A.S., Bobyr V.V. Comparison of sequential and circular scanning thermal fields and their influence on microstructure of Alnico alloy produced by laser powder bed fusion // J. Phys.: Conference Series. 2021. V. 1967. № 1. P. 012064. https://doi.org/10.1088/1742-6596/1967/1/012064
  3. Shakirov I.V., Zhukov A.S., Perevislov S.N., Olisov A.V. The Effect of Selective Laser Melting Conditions on the Structure of an Alnico Alloy // Phys. Met. Metal. 2022. V. 123. № 3. P. 227–237. https://doi.org/10.1134/S0031918X22030103
  4. Shubo Gao, Zhiheng Hu, Martial Duchamp, Krishnan P.S.S.R., Tekumalla S., Song X., Seita M. Recrystallization-based grain boundary engineering of 316L stainless steel produced via selective laser melting // Acta Mater. 2020. V. 200. P. 366–377. https://doi.org/10.1016/j.actamat.2020.09.015
  5. Xiaofeng L., Denghao Y., Xiaoyu W., Jinfang Zh., Xiaohui Y., Zixuan Zh., Jianhong W., Bin L., Peikang B. Study on Mechanism of Structure Angle on Microstructure and Properties of SLM-Fabricated 316L Stainless Steel // Frontiers in Bioengineering and Biotechnology. 2021. V. 9. P. 778332. https://www.frontiersin.org/articles/https://doi.org/10.3389/fbioe.2021.778332. 10.3389/fbioe.2021.778332
  6. Pham M.S., Dovgyy B., Hooper P.A., Gourlay C.M., Piglione A. The role of side-branching in microstructure development in laser powder-bed fusion // Nat. Commun. 2020. V. 11. P. 749. https://doi.org/10.1038/s41467-020-14453-3
  7. Zhang S., Jahn A., Jauer L., Schleifenbaum J.H. Geometry-Based Radiation Prediction of Laser Exposure Area for Laser Powder Bed Fusion Using Deep Learning // Appl. Sci. 2022. V. 12. P. 8854. https://doi.org/10.3390/app12178854
  8. Колмаков А.Г., Иванников А.Ю., Каплан М.А., Кирсанкин А.А., Севостьянов М.А. Коррозионностойкие стали в аддитивном производстве // Изв. вузов Черная Металлургия. 2021. Т. 64. № 9. С. 619–650. https://doi.org/10.17073/0368-0797-2021-9-619-650
  9. Bahl S., Mishra S., Yazar K.U., Kola I.R., Chatterjee K., Suwas S. Non-equilibrium microstructure, crystallographic texture and morphological texture synergistically result in unusual mechanical properties of 3D printed 316L stainless steel // Additive Manufacturing. 2019. V. 28. P. 65–77. https://doi.org/10.1016/j.addma.2019.04.016
  10. Molnar B., Heigel J., Whitenton E. In Situ Thermography During Laser Powder Bed Fusion of a Nickel Super Alloy 625 Artifact with Various Overhangs // J. Res. Natl. Inst. Stan. 2021. V. 126. P. 126005. https://doi.org/10.6028/jres.126.005
  11. Chernyshikhin S.V., Pelevin I.A., Karimi F., Shishkovsky I.V. The Study on Resolution Factors of LPBF Technology for Manufacturing Superelastic NiTi Endodontic Files // Mater. 2022. V. 15. P. 6556. https://doi.org/10.3390/ma15196556
  12. Vrána R., Koutecký T., ˇCervinek O., Zikmund T., Pantelejev L., Kaiser J., Koutný D. Deviations of the SLM Produced Lattice Structures and Their Influence on Mechanical Properties // Mater. 2022. V. 15. P. 3144. https://doi.org/10.3390/ma15093144
  13. Scalzo F., Totis G., Sortino M. Influence of the Experimental Setup on the Damping Properties of SLM Lattice Structures // Experimental Mechanics. 2023. V. 63. № 1. P. 17–28. https://doi.org/10.1007/s11340-022-00898-8
  14. Loginov Yu.N., Stepanov S.I., Ryshkov N.M., Yudin A.V., Tretyakov E.V. Effect of SLM parameters on the structure and properties of CP-Ti // AIP Conference Proceedings. 2018. V. 2053. P. 040052. https://doi.org/10.1063/1.5084490
  15. Peng K., Duan R., Liu Z., Lv X., Li Q., Zhao F., Wei B., Nong B., Wei S. Cracking Behavior of René 104 Nickel-Based Superalloy Prepared by Selective Laser Melting Using Different Scanning Strategies // Mater. 2020. V. 13. P. 2149. https://doi.org/10.3390/ma13092149
  16. Cao Y., Bai P., Liu F., Hou X. Investigation on the Precipitates of IN718 Alloy Fabricated by Selective Laser Melting // Metals. 2019. V. 9. P. 1128. https://doi.org/10.3390/met9101128
  17. Geiger F., Kunze K., Etter T. Tailoring the texture of IN738LC processed by selective laser melting (SLM) by specific scanning strategies // Mater. Sci. Eng.: A. 2016. V. 661. P. 240–246. https://doi.org/10.1016/j.msea.2016.03.036

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (401KB)
3.

Baixar (221KB)
4.

Baixar (253KB)
5.

Baixar (851KB)
6.

Baixar (2MB)
7.

Baixar (1MB)
8.

Baixar (553KB)

Declaração de direitos autorais © И.В. Шакиров, А.В. Олисов, П.А. Кузнецов, А.С. Жуков, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies