Use of Eutectic Effects in the Possible Creation of PCM Memory Cells on the Basis Ag–Cu Nanoclusters

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Abstract

—An attractive direction in the development of nanoelectronics is the development of a new generation of non-volatile storage devices, namely, electric phase memory or PC-RAM (Phase Change Random Access Memory). However, there are a number of unresolved problems here, such as: the stability of the amorphous phase, high power consumption, long information recording time, etc. In order to resolve these contradictions, a new approach was proposed, which consists in the use of Ag–Cu binary alloy nanoparticles as PC-RAM cells. To this end, the molecular dynamics method was used to study the processes of structurization of nanoparticles of this alloy with a size D = 2–10 nm of various target compositions with a variation in the rate of removal of thermal energy. Criteria for the stability of the amorphous and crystalline structure were evaluated, and conclusions were drawn about the target composition and size of nanoparticles suitable for creating phase-change memory cells. It was shown that in the case of the use of nanoparticles of the binary Ag–Cu alloy, it is possible to reduce the size of one cell to 6–8 nm, reduce the time of recording information to 2.5 ns, and, for the first time, based on the eutectic approach, achieve the stability of the amorphous and crystalline structure at different rates of thermal energy removal.

Авторлар туралы

D. Ryzhkova

Khakassian State University named after N. F. Katanov

Email: ygafner@khsu.ru
Russia, 655017, Abakan

S. Gafner

Khakassian State University named after N. F. Katanov

Email: ygafner@khsu.ru
Russia, 655017, Abakan

Yu. Gafner

Khakassian State University named after N. F. Katanov

Хат алмасуға жауапты Автор.
Email: ygafner@khsu.ru
Russia, 655017, Abakan

Әдебиет тізімі

  1. Jones R.O. Rationalizing the dominance of Ge/Sb/Te alloys // Physical Review B. 2020. V. 101. P. 024103.
  2. Gallo M.L. and Sebastian A. An overview of phase-change memory device physics // J. Phys. D: Appl. Phys. 2020. V. 53. P. 213002 (27 pp.).
  3. Лазаренко П.И., Козюхин С.А., Шерченков А.А., Бабич А.В., Тимошенков С.П., Громов Д.Г., Заболотская А.В., Козик В.В. Электрофизические свойства тонких пленок системы Ge–Sb–Te для устройств фазовой памяти // Изв. вузов. Физика. 2016. Т. 59. № 9. С. 80–86.
  4. Navarro G., Bourgeois G., Kluge J., Serra A. L., Verdy A., Garrione J., Cyrille M.C., Bernier N., Jannaud A., Sabbione C., Bernard M., Nolot E., Fillot F., Noé P., Fellouh L., Rodriguez G., Beugin V., Cueto O., Castellani N., Coignus, Delaye V., Socquet-Clerc C., Magis T., Boixaderas C.J., Barnola S. and Nowak E. Phase-Change Memory: Performance, Roles and Challenges // 2018 IEEE International Memory Workshop (IMW). May 2018. Kyoto, Japan. cea-02185419
  5. Aryana K., Gaskins J.T., Nag J., Stewart D.A., Bai Zh., Mukhopadhyay S., Read J.C., Olson D.H., Hoglund E.R., Howe J.M., Giri A., Grobis M.K. & Hopkins P.E. Interface controlled thermal resistances of ultra-thin chalcogenide-based phase change memory devices // Nature Communications. 2021. V.12. Article number: 774.
  6. Liu Y.-T., Li X.-B., Zheng H., Chen N.-K., Wang X.-P., Zhang X.-L., Sun H.-B., Zhang Sh. High-Throughput Screening for Phase-Change Memory Materials // Advanced Funct. Mater. 2021. P. 2009803. https://doi.org/10.1002/adfm.202009803
  7. Xu M., Qiao Ch., Xue K.-H., Tong H., Cheng X., Wang S., Wang C.-Zh., Ho K.-M., Xu M., Miao X. Polyamorphism in K2Sb8Se13 for multi-level phase-change memory // J. Mater. Chem. C. 2020. V. 8. P. 6364.
  8. Mazzone G., Rosato V., Pintore M., Delogu F., Demontis P.F., Suffritti G.B. Molecular-dynamics calculations of thermodynamic properties of metastable alloys // Phys. Rev. B: Condens. Matter. 1997. V. 55. P. 837–842.
  9. XMakemol – A program for visualizing atomic and molecular systems. – Режим доступа: www.url: https://manpages.ubuntu.com/manpages/bionic/man1/ xmakemol.1.html. – 15.04.2023.
  10. Stukowski A. Visualization and analysis of atomistic simulation data with OVITO – the open visualization tool // Modelling and Simulation in Materials Science and Engineering. 2010. V. 18. № 1. art. no. 015012. 7 p. https://doi.org/10.1088/0965-0393/18/1/015012
  11. Pang T. An introduction to computational physics. University Press, Cambridge, 2006.
  12. Tominaga J., Kolobov A.V., Fons P.J., Wang X., Saito Y., Nakano T., Hase M., Murakami S., Herfort J., Takagaki Y. Giant multiferroic effects in topological GeTe–Sb2Te3 superlattices // Sci. Technol. Adv. Mater. 2015. V. 16. P. 014 402.
  13. Редель Л.В., Гафнер С.Л., Гафнер Ю.Я., Замулин И.С., Головенько Ж.В. Анализ возможности применения нанокластеров Ni, Cu, Au, Pt и Pd при процессах записи информации // ФТТ. 2017. Т. 59. № 2. С. 399–408.
  14. Башкова Д.А., Гафнер Ю.Я., Гафнер С.Л., Редель Л.В. Применение наночастиц серебра в качестве ячеек фазо-изменяемой памяти // Фундаментальные проблемы современного материаловедения. 2018. Т. 15. № 3. С. 313–319.
  15. Panizon E., Bochicchio D., Rossi G. and Ferrando R. Tuning the structure of nanoparticles by small concentrations of impurities // Chem. Mater. 2014. V. 26. P. 3354.
  16. Dubkov S.V., Savitskiy A.I., Trifonov A.Yu., Yeritsyan G.S., Shaman Yu.P., Kitsyuk E.P., Tarasov A., Shtyka O., Ciesielski R., Gromov D.G. SERS in red spectrum region through array of Ag–Cu composite nanoparticles formed by vacuum-thermal evaporation // Optical Materials: X. 2020. V. 7. P. 100 055.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2.

Жүктеу (1MB)
3.

Жүктеу (649KB)
4.

Жүктеу (1MB)
5.

Жүктеу (1MB)

© Д.А. Рыжкова, С.Л. Гафнер, Ю.Я. Гафнер, 2023

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>