The Microstructure and Magnetic Properties of the Strip-Cast (Sm,Zr)(Fe,Co)10.3Ti0.7 Alloy

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Sm(Fe,Co,Ti)12-based alloys with low contents of rare-earth elements are promising materials for manufactoring high-energy permanent magnets. The (Sm,Zr)(Fe,Co)10.3Ti0.7 alloy has been produced by strip casting with low quenching rates. The structure and magnetic properties of the alloy were studied by scanning electron microscopy, as well as X-ray and thermomagnetic analysis. The initial inhomogeneous alloy was subjected to solid-solution treatment at 1150°С. The alloy retained a high-anisotropy state typical of the Sm(Fe,Co,Ti)12 phase.

About the authors

A. V. Protasov

Miheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences; Ural Federal University

Email: protasov@imp.uran.ru
Ekaterinburg, 620108 Russia; Ekaterinburg, 620002 Russia

A. G. Popov

Miheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences; Ural Federal University

Email: protasov@imp.uran.ru
Ekaterinburg, 620108 Russia;Ekaterinburg, 620002 Russia

A. S. Volegov

Miheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences; Ural Federal University

Email: protasov@imp.uran.ru
Ekaterinburg, 620108 Russia; Ekaterinburg, 620002 Russia

V. S. Gaviko

Miheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences; Ural Federal University

Email: protasov@imp.uran.ru
Ekaterinburg, 620108 Russia; Ekaterinburg, 620002 Russia

A. V. Shitov

Miheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences; Urals Electromechanical Plant, Joint-Stock Company

Email: protasov@imp.uran.ru
Ekaterinburg, 620108 Russia; Ekaterinburg, 620137 Russia

O. A. Golovnya

Miheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences; Ural Federal University

Author for correspondence.
Email: protasov@imp.uran.ru
Ekaterinburg, 620108 Russia; Ekaterinburg, 620002 Russia

References

  1. Tozman P., Sepehri-Amin H., Hono K. Prospects for the development of SmFe12-based permanent magnets with a ThMn12-type phase // Scr. Mater. 2021. V. 194. P. 113 686.
  2. Schönhöbel A.M., Madugundo, R., Barandiarán J.M., Hadjipanayis G.C., Palanisamy D., Schwarz T., Gault B., Raabe D., Skokov K., Gutfleisch O., Fischbacher J., Schrefl T. Nanocrystalline Sm-based 1:12 magnets // Acta Mater. 2020. V. 200. P. 652–658.
  3. Kuno T., Suzuki S., Urushibata K., Kobayashi K., Sugimoto S. Experimental determination of the saturation polarization and the anisotropy field in ThMn12-type magnets using the LAFS method // J. Magn. Magn. Mater. 2020. V. 498. P. 166114.
  4. Saito T., Watanabe F., Nishio-Hamane D. High-coercivity Sm(Fe,V,Ti)12 bulk magnets // Mater. Res. Bull. 2021. V. 133. P. 111060.
  5. Gabay A.M., Hadjipanayis G.C. Isotropic nanocrystalline Sm(Fe,Co)11.3Ti0.7 magnets modified with B and Zr // J. Magn. Magn. Mater. 2021. V. 529. P. 167867.
  6. Otsuka K., Kamata M., Nomura T., Iida H., Nakamura H. Coercivities of Sm–Fe–M Sintered Magnets with ThMn12-Type Structure (M = Ti, V) // Mater. Trans. 2021. V. 62. P. 887–891.
  7. Qian H.-D., Lim J.T., Kim J.-W., Yang Y., Cho K.M., Park J., Choi C.-J. Phase transformation and magnetic properties of fully dense Sm(Fe0.8Co0.2)11Ti bulk magnets // Scr. Mater. 2021. V. 193. P. 17–21.
  8. Tang X., Li J., Srinithi A.K., Sepehri-Amin H., Ohkubo T., Hono K. Role of V on the coercivity of SmFe12-based melt-spun ribbons revealed by machine learning and microstructure characterizations // Scr. Mater. 2021. V. 200. P. 113925.
  9. Zhang J.S., Tang X., Sepehri-Amin H., Srinithi A.K., Ohkubo T., Hono K. Origin of coercivity in an anisotropic Sm(Fe,Ti,V)12-based sintered magnet // Acta Mater. 2021. V. 217. P. 117161.
  10. Srinithi A.K., Sepehri-Amin H., Tang X., Tozman P., Li J., Zhang J., Kobayashi S., Ohkubo T., Nakamura T., Hono K. Phase relations and extrinsic magnetic properties of Sm–(Fe,Co)–Ti–(Ga)-based alloys for ThMn12-type permanent magnets // J. Magn. Magn. Mater. 2021. P. 167 866.
  11. Li Y., Yu N., Wu Q., Pan M., Zhang S., Ge H. Role and optimization of thermal annealing in Sm0.74Zr0.26(Fe0.8Co0.2)11Ti alloys with ThMn12 structure // J. Magn. Magn. Mater. 2022. V. 549. P. 169065.
  12. Gabay A.M., Hadjipanayis G.C. Microstructure and Hard Magnetic Properties of Sm1 – xZrx(Fe,Co)11.3 – yTi0.7ByIngots and Thick Melt-Spun Ribbons // IEEE Trans. Magn. 2022. V. 58. P. 3–7.
  13. Tozman P., Fukazawa T., Ogawa D., Sepehri-Amin H., Bolyachkin A., Miyake T., Hirosawa S., Hono K., Takahashi Y.K. Peculiar behavior of V on the Curie temperature and anisotropy field of SmFe12 – xVx compounds // Acta Mater. 2022. V. 232. P. 117928.
  14. Lee H., Kang M.K., Lee G., Kim J. Magnetic properties and microstructures of Sm–Fe–Ti alloys with ThMn12 structure prepared by melt-spinning method // IEEE Trans. Magn. 2022. V. 9464. P. 1–1.
  15. Gabay A.M., Han C., Ni C., Hadjipanayis G.C. Effect of alloying with Sc, Nb and Zr on reduction-diffusion synthesis of magnetically hard Sm(Fe,Co,Ti)12-based monocrystalline powders // J. Magn. Magn. Mater. 2022. V. 541. P. 168 550.
  16. Hagiwara M., Sanada N., Sakurada S. Structural and magnetic properties of rapidly quenched (Sm,R)(Fe,Co)11.4Ti0.6 (R = Y, Zr) with ThMn12 structure // AIP Adv. 2019. V. 9. P. 035036.
  17. Neznakhin D.S., Andreev S. V., Semkin M.A., Selezneva N.V., Volochaev M.N., Bolyachkin A.S., Kudrevatykh N.V., Volegov A.S. Structure and magnetic properties of (Sm0.9Zr0.1)Fe11Ti alloys with ThMn12-type structure // J. Magn. Magn. Mater. 2019. V. 484. P. 212–217.
  18. Popov A.G., Protasov A.V., Gaviko V.S., Kolodkin D.A., Terentev P.B., Gerasimov E.G., Zhang T., Jiang C. Magnetic properties of melt-spun ribbons (Sm1–Zr)(Fe0.92Ti0.08)10 with ThMn12 structure and their hydrides // J. Rare Earths. 2019. V. 37. P. 1066–1071.
  19. Urzhumtsev A., Anikin M., Tarasov E., Semkin M., Cherepkov M., Kudrevatykh N., Zinin A., Moskalev V. Effect of alloying elements (Zr, Hf, Co), heat and mechanical treatment conditions on the phase composition and magnetic properties of SmFe11Ti compounds with ThMn12 structure // EPJ Web Conf. 2018. V. 185. P. 04026.
  20. Takahashi Y., Sepehri-Amin H., Ohkubo T. Recent advances in SmFe12-based permanent magnets // Sci. Technol. Adv. Mater. 2021. V. 22. P. 449–460.
  21. Coehoorn R. Electronic structure and magnetism of transition-metal-stabilized YFe12 – xMx intermetallic compounds // Phys. Rev. B. 1990. V. 41. P. 11 790–11 797.
  22. Zhang J.S., Tang X., Bolyachkin A., Srinithi A.K., Ohkubo T., Sepehri-Amin H., Hono K. Microstructure and extrinsic magnetic properties of anisotropic Sm(Fe,Ti,V)12-based sintered magnets // Acta Mater. 2022. V. 238. P. 118228.
  23. Tozman P., Sepehri-Amin H., Takahashi Y.K., Hirosawa S., Hono K. Intrinsic magnetic properties of Sm(Fe1 – xCox)11Ti and Zr-substituted Sm1 ‒ yZ ry(Fe0.8Co0.2)11.5Ti0.5 compounds with ThMn12 structure toward the development of permanent magnets // Acta Mater. 2018. V. 153. P. 354–363.
  24. Kuno T., Suzuki S., Urushibata K., Kobayashi K., Sakuma N., Yano M., Kato A., Manabe A. (Sm,Zr)(Fe,Co)11.0–11.5Ti1.0–0.5 compounds as new permanent magnet materials // AIP Adv. 2016. V. 6. P. 0–5.
  25. Chen C., Huang Y.L., Yao Y.F., Fu X.K., Li W., Hou Y.H. Effects of thermal annealing on improved magnetic properties and microstructure for SmFe11Ti alloy // J. Magn. Magn. Mater. 2021. V. 530. P. 167950.
  26. Qian H.-D., Lim J.T., Kim J.-W., Yang Y., Zhou T.H., Jeon H.K., Park J., Choi C.-J. Physical and Magnetic Properties of ThMn12-Type Sm(Fe0.8Co0.2)10Si2 Melt-Spun Ribbons // Metals (Basel). 2022. V. 12. P. 753.
  27. Shcherbakova Y.V., Ivanova G.V., Bartashevich M.I., Khrabrov V.I., Belozerov Y.V. Magnetocrystalline anisotropy and exchange interactions in the novel R3(Fe,V)29 compounds (R = Y, Nd, Sm) // J. Alloys Compd. 1996. V. 240. P. 101–106.
  28. Saito T., Kamagata Y. Synthesis and magnetic properties of Sm3(Fe, Ti)29 compound // J. Alloys Compd. 2008. V. 454. P. 210–213.
  29. Maccari F., Schäfer L., Radulov I., Diop L.V.B., Ener S., Bruder E., Skokov K., Gutfleisch O. Rapid solidification of Nd1 + xFe11Ti compounds: Phase formation and magnetic properties // Acta Mater. 2019. V. 180. P. 15–23.
  30. Vasilenko D.Y., Shitov A. V., Bratushev D.Y., Podkorytov K.I., Gaviko V.S., Golovnya O.A., Popov A.G. Magnetics Hysteresis Properties and Microstructure of High-Energy (Nd,Dy)–Fe–B Magnets with Low Oxygen Content // Phys. Met. Metal. 2021. V. 122. P. 1173–1182.
  31. Kolchugina N.B., Lukin A.A., Kaminskaya T.P., Burkhanov G.S., Skotnicova K., Kursa M., Dormidontov N.A., Prokof’ev P.A., Zelezhnyi M. V., Cegan T., Ginzburg B.A., Bakulina A.S. Morphological Peculiarities of R–Fe–B (R = Nd, Pr) Alloys Formed upon Solidification by Strip-Casting // Phys. Met. Metal. 2020. V. 121. P. 772–782.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (777KB)
3.

Download (109KB)
4.

Download (191KB)
5.

Download (1MB)
6.

Download (80KB)
7.

Download (2KB)
8.

Download (2KB)
9.

Download (96KB)

Copyright (c) 2023 А.В. Протасов, А.Г. Попов, А.С. Волегов, В.С. Гавико, А.В. Шитов, О.А. Головня

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies