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Исследована термическая стабильность тонких проводов (проволок) из алюминиевых сплавов 
Al-0.25%Zr, дополнительно легированных Si, Er, Hf, Nb. Литые заготовки получали методом ин-
дукционного литья в вакууме; проволоку диаметром 0.3 мм получили путем волочения с пред-
варительной деформационной обработкой заготовок. Изучено влияние температуры отжига на 
механические свойства и удельное электросопротивление (УЭС) алюминиевых проводов. Иссле-
дована микроструктура проводов в рекристаллизованном состоянии. Показано, что при увели-
чении температуры отжига происходит монотонное уменьшение предела прочности, микротвер-
дости и УЭС. Установлено, что пластичность проволоки немонотонно (с максимумом) зависит 
от температуры отжига. Определены оптимальные режимы отжига, обеспечивающие наилучшее 
сочетание предела прочности, микротвердости и УЭС алюминиевой проволоки.
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ВВЕДЕНИЕ
Высокопрочные алюминиевые сплавы с по-

вышенной удельной электропроводностью 
рассматриваются в качестве замены медных 
сплавов [1-3], широко применяемых для изго-
товления проводов в авиации и автомобилестро-
ении. Тонкий алюминиевый провод диаметром 
до 0.5 мм с высокой прочностью и электропро-
водностью может применяться также в электро-
энергетике. Традиционный подход к разработке 
проводниковых алюминиевых сплавов состоит в 
их легировании элементами, которые слабо вли-
яют на удельную электропроводность, но увели-
чивают прочность. 

В настоящее время наиболее распростране-
ны эвтектические алюминиевые сплавы, содер-
жащие большую суммарную концентрацию та-
ких редкоземельных элементов (РЗЭ), как La, 
Ce, Sm и др. [4-9]. Вторым примером являются 
сплавы системы Al-Mg-Si [10-19], обладающие 

хорошей пластичностью, что позволяет изготав-
ливать из них тонкие провода, но их прочность 
часто недостаточна. Деформационная обработ-
ка алюминиевых сплавов позволяет повысить их 
прочность, но отрицательно влияет на их пла-
стичность и термическую стабильность. Важно 
отметить, что к современным проводниковым 
алюминиевым сплавам предъявляются повы-
шенные требования по длительной термической 
стабильности (см., напр., ГОСТ Р МЭК 62004-
2014 – не менее 130 МПа). Современные прово-
дниковые эвтектические алюминиевые сплавы 
и сплавы Al-Mg-Si обладают хорошей термиче-
ской стабильностью при малых временах отжи-
га, но при длительных испытаниях часто их ха-
рактеристики резко снижаются.

Активно разрабатываются проводниковые 
сплавы системы Al-Zr [20, 21]. В данных спла-
вах при повышенной температуре (более 350°С) 
и длительной выдержке (50-100 ч) образуются 
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упрочняющие частицы Al3Zr со структурой L12. 
Отметим, что для современных проводниковых 
сплавов необходимо обеспечение сверхдлитель-
ной стабильности структуры при температуре 
180-220°С, близкой к температуре начала рекри-
сталлизации чистого алюминия. В сплавах си-
стемы Al-Zr частицы выделяются при более вы-
соких температурах или существенно больших 
временах отжига [22, 23]. Это приводит к необ-
ходимости проводить дополнительный отжиг 
заготовок алюминиевых сплавов перед волоче-
нием или раскаткой, что отрицательно влияет на 
технологическую пластичность заготовки. 

Вторая проблема сплавов Al-Zr - это пре-
рывистый распад твердого раствора, который 
приводит к выделению крупных частиц иголь-
чатой (веретенообразной) формы [24-26]. Те-
ория прерывистого распада твердого раствора 
в настоящее время достаточно подробно раз-
работана, и мы не будем здесь останавливать-
ся на этом вопросе. Важно лишь отметить, что 
выделение таких частиц приводит к снижению 
технологической пластичности алюминиевого 
сплава и к увеличению числа обрывов провода 
при его холодном волочении. Для решения дан-
ной проблемы сплавы системы Al-Zr легируют 
элементами (Er, Hf, Y и др.), обеспечивающими 
снижение температуры начала распада твердого 
раствора Zr в Al [27-31]. Перспективным являет-
ся сочетание комплексного легирования с мно-
гостадийной термической обработкой, которая 
также позволяет снизить интенсивность преры-
вистого распада твердого раствора [24].

Цель работы - изготовление и исследование 
термической стабильности тонких проводов, 
изготовленных из мелкозернистых сплавов Al-
0.25%Zr, дополнительно легированных Si, Er, 
Hf, Nb. Результаты исследований термической 
стабильности микроструктуры, механических 
свойств и удельного электросопротивления 
(УЭС) заготовок из этих мелкозернистых алю-
миниевых сплавов ранее были описаны в рабо-
те [32].

МАТЕРИАЛЫ И МЕТОДИКИ
Объектами исследования служили провода из 

микролегированных алюминиевых сплавов ди-
аметром 0.3 мм. Химический состав алюминие-
вых сплавов описан в табл. 1. 

Крупнозернистые заготовки сплавов раз-
мером 20×20×160 мм были получены методом 
индукционного литья из высокочистого алю-
миния А99(997) с помощью литьевой машины 
INDUTHERM VTC-200. Режимы изготовления 
заготовок указаны в табл. 2. Для изготовления 
сплавов использовали лигатуры Al-3%Zr, Al-
3%Hf, Al-3%Si, Al-3%Er, Al-2%Nb, полученные 
методом индукционного литья с последующей 
прокаткой в фольгу толщиной 0.2 мм. Далее за-
готовки подвергали равноканальному углово-
му прессованию (РКУП) и ротационной ковке 
(РК). РКУП осуществляли на гидравлическом 
прессе Ficep HF400L, в оснастке квадратно-
го сечения. С помощью ротационно-ковочной 
машины HMP P5-4-21H изготовлены цилин-
дрические заготовки диаметром 6 мм и длиной 
1.3-1.5 м. После РК заготовки не подвергали от-
жигу. Изготовление тонкого провода диаметром 
0.3 мм осуществляли методом волочения при 
комнатной температуре, с помощью стана для 
волочения RODENT CGDE-1200 15.420. Для во-
лочения использовали твердосплавные филье-
ры. Режимы деформационной обработки заго-
товок перед волочением указаны в табл. 2. 

Исследования микротвердости Hv проводили 
в центре поперечного сечения провода с исполь-
зованием твердомера Qness A60+ при нагрузке 
20 г. Средняя погрешность измерения Hv состав-
ляла 3.5% от измеренного значения. Для про-
ведения измерения образцы проводов запрес-
совывали в бакелит с помощью станка Buehler 
Simplimet 1000 и подвергали механической по-
лировке с помощью станка Buehler AutoMet 250; 
на финальном этапе проводили полировку на 
коллоидной суспензии SiO2 (50 нм). Температура 
и время запрессовки составляли 160°С и 15 мин 
соответственно.

Таблица 1. Химический состав сплавов исследуемых сплавов

Сплав
Химический состав, мас. % (ат. %)

Al Zr Si Er Hf Nb
1

Ост. 0.25 (0.074)

0.15 (0.097) 0.25 (0.041) 0.20 (0.030) —
2 0.15 (0.096) 0.25 (0.040) — —
3 0.15 (0.096) — — —
4 — — 0.15 (0.023) —
5 — — 0.25 (0.038) —
6 — — — 0.15 (0.044)
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Исследование микроструктуры проводили на 
растровом электронном микроскопе (РЭМ) Jeol 
JSM-6490 с энергодисперсионным микроана-
лизом Oxford Instruments INCA 350 и просвечи-
вающем электронном микроскопе (ПЭМ) Jeol 
JEM-2100F с энергодисперсионным рентгенов-
ским спектрометром Jeol JED-2300. 

Для испытаний на растяжение использована 
разрывная машина Lloyd Instruments LR5K Plus. 
Испытания образцов длиной 0.6 м проводили при 
комнатной температура, при скорости деформа-
ции 10 мм/мин (0.001 с-1). В процессе испытаний 
фиксировали диаграмму “напряжение σ – дефор-
мация ε”, по которой определяли предел прочно-
сти σВ и относительное удлинение до разрушения 
d. Фрактографическое исследовании изломов об-
разцов проводили на РЭМ Jeol JSM-6490.

Термическую обработку образцов проводили 
в воздушной печи ЭКПС-10. Точность поддер-
жания температуры составляла 5°С.

Для измерения УЭС провода использовали 
цифровой L-C-R измеритель E7-8. Для каждого 
образца длиной 0.6 м исследовали площадь по-
перечного сечения в 10 точках с точностью из-
мерения диаметра образца 10 мкм. Погрешность 
измерения УЭС составляла 0.05 мкОм×см.

Далее провода, изготовленные из сплавов 
№ 1-6 (см. табл. 1), для краткости будем обозна-
чать как провода № 1-6.

ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ
Провода в исходном состоянии имеют сильно 

деформированную структуру; средний размер 
фрагментов составляет ~0.2-0.5 мкм. Химиче-
ский состав проводов не оказывает заметного 
влияния на параметры микроструктуры сплавов 
в исходном (неотожженном) состоянии.

В табл. 3 приведены результаты исследований 
свойств проводов в исходном состоянии. 

Таблица 2. Режимы изготовления проводов

Сплав
Режимы изготовления 1 2 3 4 5 6

Этап 1: Индукционное литье
Изложница, мм 22×22×160, медь

Керамический тигель, см3 150
Продувка аргоном перед плавкой, циклы 3

Продувка аргоном во время нагрева, циклы 3
Перемешивание расплава Индукционное

Мощность нагрева, кВт 4.5
Температура выдерживания расплава, °С 800
Время до расплавления компонентов, с 505 455 475 485 500 492
Время выдержки перед разливкой, мин 20

Температура разливки, °С 780
Время охлаждения, с

в т. ч. время вибрации, с
50-250

50
Этап 2: РКУП

Температура, °С 250
Число циклов 4

Скорость, мм/с 0.1
Угол пересечения каналов, ° 90

Этап 3: Ротационная ковка
Температура, °С 20°С

Схема деформации, мм ∅ 20 → 6
Суммарная степень накопленной деформации, % 70

Этап 4: Волочение
Температура, °С 20°С

Схема деформации, мм ∅ 6 → 0.3
Суммарная степень накопленной деформации, % 95
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Минимальная микротвердость (395 МПа) в 
исходном состоянии наблюдается для прово-
да, изготовленного из сплава Al-0.25Zr-0.15Nb 
(сплав № 6). Значения микротвердости для про-
водов № 1-5 лежат в интервале от 495 МПа (сплав 
№ 4) до 565 МПа (сплав № 1). Это превышает 
значения микротвердости для данных сплавов в 
литом состоянии на 150 (сплав № 6) и 250 МПа 
(сплавы № 1-5) [32], но близко к твердости ис-
ходных мелкозернистых заготовок (табл. 3).

Испытания на растяжение показали, что в 
исходном состоянии провода № 1, № 2 и № 3 
обладают наибольшими значениями предела 
прочности. Кривые растяжения s(e) имеют ти-
пичный вид для сильно упрочненных металлов; 
стадия равномерного пластического течения ма-
ла (рис. 1).

Относительное удлинение до разрушения 
δ составляет ~1% (табл. 3). Несмотря на малую 

пластичность, фрактографический анализ по-
казал, что провода из всех сплавов в исходном 
состоянии разрушаются вязко; изломы пред-
ставляют собой совокупность ямок различных 
размеров (рис. 2). 

Наименьшим значением УЭС в исходном со-
стоянии обладают провода № 4 (3.11 мкОм·см) 
и № 5 (3.12 мкОм·см). Наибольшее УЭС 
наблюдается для провода № 1 (3.53 мкОм·см), 
который содержит максимальную концентрацию 
легирующих элементов.

Результаты исследования термической ста-
бильности проводов представлены на рис. 3. Для 
всех сплавов наблюдается монотонно спадаю-
щий характер зависимости микротвердости от 
температуры 30-минутного отжига. Из рис. 3а 
видно, что разупрочнение материала проводов 
№ 1-5 начинается при нагреве до температуры 
200°С. Анализ зависимостей Hv(T) показывает, 

Таблица 3. Свойства проводов в исходном состоянии

№ 1 2 3 4 5 6
Свойства проводов

Hv, МПа 565±15 545±20 520±20 495±10 515±15 395±10
σВ, МПа 268±16 260±10 261±19 186±18 224±22 170±15

δ, % 0.3±0.2 1.0±0.6 0.6±0.4 1.5±0.7 2.2±0.5 1.9±1.5
ρ, мкОм·см 3.53±0.05 3.35±0.05 3.35±0.05 3.48±0.05 3.44±0.05 3.31±0.05

Характеристики заготовок после РКУП + РК
Hv, МПа 500±15 510±20 465±15 420±15 430±15 400±10

ρ, мкОм·см 3.47±0.03 3.45±0.04 3.23±0.04 3.15±0.02 3.16±0.02 3.43±0.04
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Рис. 1. Диаграммы растяжения образцов проводов № 1 (а) и № 5 (б).
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Рис. 2. Фрактографический анализ изломов проводов в исходном состоянии. Номера на рисунках соответствуют 
номерам сплавов в табл. 1. РЭМ.
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Рис. 3. Зависимости Hv (а), σВ (б), ρ (в) от температуры 30-минутного отжига алюминиевых проводов.
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что добавление к сплаву Al-0.25%Zr ниобия 
(сплав № 6) негативно сказывается на его твер-
дости и прочности. Основной причиной являет-
ся то, что в присутствии Nb образуются крупные 
частицы Al3(Zr,Nb) со структурой D023 [33]. Это 
приводит к уменьшению объемной доли частиц 
Al3Zr со структурой L12, дающих наибольший 
вклад в прочность и термическую стабильность 
мелкозернистого сплава. Максимальной твердо-
стью после 30-минутного отжига при 500°С об-
ладают провода № 1 и № 2 (рис. 3а). Отметим, 
что твердость отожженных проводов оказыва-
ется больше твердости заготовок, отожженных 
при тех же температурах (см. [32]).

Для всех сплавов наблюдается уменьшение 
УЭС при увеличении температуры отжига на 
~ 0.2 мкОм·см (рис. 3в). Интенсивное умень-
шение УЭС, обусловленное распадом твердого 
раствора в алюминиевых сплавах, начинается 
после нагрева до 200-250°С. Минимальное УЭС 
после отжига при 500°С характерно для сплава 
№ 2, но следует отметить, что его величина су-
щественно превышает УЭС чистого алюминия 
(~2.7 мкОм×см). Полученный результат свиде-
тельствует о том, что в исследуемых проводах 
полного распада твердого раствора не произо-
шло.

На рис. 3б представлены результаты испыта-
ний на растяжение. Характер изменения кривых 
s(e) после отжига показан на рис. 1; на кривых 
s(e) для отожженных сплавов наблюдается явно 
выраженная стадия равномерного пластического 
течения. Как видно из рис. 1 и рис. 3, отжиг при-
водит к снижению предела прочности и немоно-
тонному изменению удлинения до разрушения. 
Для всех образцов проводов, кроме изготовлен-
ных из сплава № 5, наблюдается увеличение уд-
линения до разрушения после нагрева до 400-
450°С и снижение пластичности при увеличении 
температуры отжига до 500°С. После отжига 
при 500°С величина δ не превышает 7% для всех 
сплавов кроме № 5. Для провода № 5 величина 
δ ~ 32%. Результаты электронно-микроскопи-
ческих исследований показывают, что при этих 
температурах происходит рост выделившихся в 
результате отжига частиц Al3(Zr,Х) (рис. 4), а так-
же наблюдается аномальный рост зерен (рис. 5а). 
Отметим, что в сплаве № 5 после отжига сохраня-
ется однородная мелкозернистая микрострукту-
ра со средним размером зерна ~ 5 мкм (рис. 5б), 
что, вероятно, обуславливает его повышенную 
пластичность после отжига при температуре 
500°С (рис. 3в). Частицы при этом выделяются 
преимущественно в объеме зерен (рис. 4).

Фрактографический анализ (рис. 6) области 
разрушения показывает, что отжиг приводит к 
изменению характера изломов; ямок на поверх-
ности излома не обнаружено. 

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ
Микротвердость заготовок № 1-6 состав-

ляла 500±15 МПа (№ 1), 510±20 МПа (сплав 
№ 2), 465±15  МПа (№ 3), 420±15 МПа (№ 4), 
430±15 МПа (№ 5) и 400±10 МПа (№ 6) [32]. Та-
ким образом, микротвердость проводов в исход-
ном состоянии оказывается выше, чем микрот-
вердость заготовок. УЭС проводов близко к УЭС 
заготовок.

Зависимости предела прочности от микрот-
вердости исследуемых алюминиевых проводов 

50 нм

10 нм

(а)

(б)

Рис. 4. Частицы Al3Zr в проводах из сплава № 2 (а) и 
№ 5 (б) после отжига при 300°С. ПЭМ.
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представлены на рис. 7. Из рисунка видно, что 
между sВ и Hv наблюдается надежная корреля-
ция, но характер зависимости sВ(Hv) отличен от 
обычной линейной функции.

На рис. 8 обобщены результаты исследова-
ний УЭС и предела прочности проводов. Штри-
ховыми линиями отмечен уровень характери-
стик, который должен быть обеспечен в новых 

проводниковых сплавах, выступающих в ка-
честве замены промышленного сплава 01417  
(ρ ≤ 3.0–3.1 мкОм·см, sВ ≥ 160-200 МПа) (см. [34]). 

Анализ представленных на рис. 8 данных по-
казывает, что провода имеют более высокие зна-
чения УЭС (ρ > 3.1 мкОм·см), но после терми-
ческой обработки (200°С, 30 мин) все провода 
обладают необходимыми значениями предела 

Рис. 5. РЭМ-изображения микроструктуры провода № 2 (а) и № 5 (б) после отжига при температуре 500°С (30 мин). РЭМ.

(а) (б)

50 мкм 50 мкм

Провод № 1

Провод № 5
20°С 450°С 500°С

20°С 450°С 500°С

20 мкм 20 мкм 20 мкм

20 мкм 20 мкм 20 мкм

Рис. 6. Фрактографический анализ изломов образцов провода № 1 и № 5 после термической обработки (30 мин) 
при различных температурах. РЭМ.
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прочности. Отметим также, что в соответствии 
с требованиями ГОСТ Р МЭК 62004–2014 1-ча-
совый отжиг при 400°С моделирует длительную 
(более 350 тыс. ч) эксплуатацию провода при 
150°С. Полученный результат означает, что раз-
работанные провода обладают необходимым 
уровнем термической стойкости прочности.

По нашему мнению, основной причиной 
повышенных значений УЭС отожженных про-
водов является незавершенность процесса рас-
пада твердого раствора. Это крайне неожидан-
ный результат, поскольку, как видно из работы 
[32], УЭС мелкозернистых заготовок из сплавов 
№ 1-6 после отжига 500°С оказывается в интер-
вале 2.9-3.1 мкОм×см, что соответствует выдви-
гаемым требованиям. Поскольку УЭС загото-
вок, измеряемое вихретоковым методом, близко 
к УЭС проводов (табл. 3), то наблюдаемые раз-
личия для отожженных заготовок и отожженных 
проводов связаны, очевидно, с различиями в ха-
рактере выделения частиц второй фазы.

Таким образом, отожженные провода облада-
ют одновременно повышенной (по отношению 
к мелкозернистым заготовкам) твердостью и 
УЭС. Наиболее наглядно это видно из представ-
ленной на рис. 9 диаграммы “микротвердость – 
УЭС”, на которой проведено сравнение данных 
для проводов и заготовок.

Обычно предполагается, что дополнительная 
деформация оказывает слабое влияние на про-
цесс выделения частиц Al3X [34], но может ока-
зывать влияние на механизм их выделения [36].

Из анализа зависимостей УЭС от времени от-
жига с использованием уравнения Мела-Джон-
са-Аврами-Колмогорова было показано, что 
основным механизмом распада твердого рас-
твора в исследуемых мелкозернистых сплавах 
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Рис. 7. Зависимости предела прочности от микротвердости 
исследуемых алюминиевых проводов.
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Рис. 8. Диаграмма “УЭС (ρ) – предел прочности (σВ)” для 
проводов (закрашенные маркеры) и заготовок (светлые 
маркеры).

200
2.80

2.90

3.00

3.10

3.20

3.30

3.40

3.50

300 400 500 600 700
Hv, МПа

1

1ʹ

2

2ʹ

3

3ʹ

ρ,
 м

кО
м

 · 
см

Рис. 9. Диаграмма “микротвердость – УЭС” для проводов 
(светлые маркеры) и заготовок (закрашенные маркеры) из 
сплавов № 1, 2 и 3.
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№ 1-6 является выделение частиц на ядрах ре-
шеточных дислокаций [32]. 

Провода № 1-6 после отжига при 500°С име-
ют более мелкозернистую микроструктуру, чем 
заготовки, отожженные при тех же температурах 
(см. [32]). Это приводит к тому, что твердость 
отожженных проводов превышает твердость 
отожженных заготовок. 

Полученный результат означает, что в соот-
ветствии с уравнением Зинера при отжиге про-
водов выделяются частицы меньшего размера, 
чем при отжиге заготовок. По нашему мнению, 
это связано с преимущественным выделени-
ем частиц в объеме зерен при отжиге проводов 
(рис. 4), в то время как при нагреве заготовок ча-
стицы выделяются по ядрам решеточных дисло-
каций ([32]). Поскольку коэффициент диффу-
зии в кристаллической решетке намного меньше 
коэффициента диффузии по ядрам дислокаций, 
то интенсивность выделения и роста частиц при 
отжиге проводов будет меньше, чем при отжиге 
мелкозернистых заготовок.

ЗАКЛЮЧЕНИЕ
Исследованы особенности изменения меха-

нических свойств и удельного электросопро-
тивления проводов из алюминиевых сплавов  
Al-0.25%Zr, микролегированных Si, Er, Hf, Nb.

Показано, что после отжига провода из спла-
ва № 5 (Al-0.25Zr-0.25Hf) при 500°С наблюдает-
ся однородная мелкозернистая структура и уве-
личение пластичности до 7%. 

Установлено, что в результате отжига про-
водов наблюдается снижение интенсивности 
изменения УЭС по сравнению с изменением 
УЭС в мелкозернистых заготовках, из которых 
были изготовлены данные провода методом во-
лочения. Оптимальным сочетанием прочности 
и УЭС обладает сплав № 2 (Al-0.25Zr-0.10Si-
0.25Er) после термической обработки при 300°C 
(30 мин). 

Работа выполнена при поддержке Россий-
ского научного фонда (грант №20-19-00672 
https://rscf.ru/project/20-19-00672/ ФГАОУ ВО  
“Национальный исследовательский Ниже-
городский государственный университет 
им. Н.И. Лобачевского”, Нижегородская обл.). 
Исследования микроструктуры с использова-
нием метода ПЭМ проведены на оборудова-
нии ЦКП “Материаловедение и металлургия”  
НИТУ “МИСИС” при финансовой поддержке 
Минобрнауки России.

Авторы данной работы заявляют, что у них 
нет конфликта интересов.
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THERMAL STABILITY OF ELECTRICAL CONDUCTIVITY  
AND MECHANICAL PROPERTIES OF THIN WIRES  

FROM ALUMINUM ALLOYS Al–0.25%Zr–(Si, Er, Hf, Nb)
I. S. Shadrina1, *,  A. A. Bobrov1,  A. V. Nokhrin1,  N. N. Berendeev1,  V. I. Kopylov1,  

V. N. Chuvildeev1,  and  N. Yu. Tabachkova2, 3
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The thermal stability of thin wires made of aluminum alloys Al-0.25%Zr, additionally alloyed with Si, 
Er, Hf, Nb, was studied. Cast blanks were obtained by induction casting in vacuum; wire with a diameter 
of 0.3 mm was obtained by drawing with preliminary deformation treatment of the blanks. The effect of 
the annealing temperature on the mechanical properties and specific electric resistivity (SER) of alumi-
num wires has been studied. The microstructure of wires in the recrystallized state is investigated. It is 
shown that as the annealing temperature increases, there is a monotonous decrease in tensile strength, 
micro-hardness, and SER. It is established that the ductility of the wire does not monotonously (with a 
maximum) depend on the annealing temperature. Optimal annealing modes have been determined, pro-
viding the best combination of tensile strength, microhardness and SER of aluminum wire.

Keywords: aluminum, wire, strength, electric resistivity
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