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Тонкие углеродные пленки напыляли на поверхность армко-железа методом магнетронного 
распыления углеродной мишени в среде рабочего газа Ar+. Затем углеродные пленки подвергали 
имплантации ионов аргона и азота. Для уточнения содержания различным образом гибридизиро-
ванных (то есть находящихся в различном химическом состоянии) атомов углерода в осажденном 
материале применена методика анализа спектров потерь энергии фотоэлектронов. Показано, что 
сателлитная структура C1s-спектров при совместном анализе с РФЭС остовного уровня С1s под-
тверждает формирование разупорядоченной структуры углеродной пленки и позволяет опреде-
лять массовую плотность тонких углеродных пленок.
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ВВЕДЕНИЕ
Спектроскопия потерь энергии электро-

нов является одним из наиболее информатив-
ных методов изучения электронного строения 
углеродных материалов. Еще в ранних работах, 
например [1], было показано, что сателлитная 
структура, сопровождающая рентгенофотоэлек-
тронный (РФЭ) пик С1s, несет в себе важную 
информацию о материале. Было установлено, 
что пик плазмонных потерь π+σ графита на рас-
стоянии 27 эВ от основного пика С1s позволяет 
определить массовую плотность графита. Учи-
тывая связь энергии плазмона и массовой плот-
ности вещества, было определено, что плотность 
фуллерена составляет 2.03 г/см3, что существен-
но отличается от значений, ранее полученных 
рентгеноструктурными методами [2]. Исследо-
ванию спектров потерь энергии электронов по-
священо значительное количество работ, в том 
числе [3-5]. В ряде работ были получены зна-
чения энергий пиков плазмонных потерь Ер в 
спектрах углеродных материалов. В частности, 
было определено положение пиков потерь для 
различных форм углерода (графит, алмаз, амор-
фный углерод, стеклоуглерод) [6, 7], при этом 
часть экспериментальных данных была получена 

методами EELS (Electron energy loss spectroscopy) 
при бомбардировке поверхностей моноэнерге-
тичным электронным потоком. В обзорной ра-
боте [8] подробно показано, что из анализа спек-
тров плазмонных потерь можно определить как 
массовую, так и атомную плотность углеродных 
материалов, в частности тонких пленок аморф-
ного углерода.

Значительную информацию можно полу-
чить из анализа формы фотоэлектронных спек-
тров остовных уровней, оже-электронных спек-
тров и спектров валентных полос. В работе [9] 
еще в 1977 г. были указаны причины асимметрии  
РФЭС-пиков. В работах [10-13] детально обсуж
дена природа уширения O1s, Si2p-спектров и 
сделан вывод о том, что основными факторами 
являются фононное уширение, приводящее к тем-
пературно-зависимому симметричному гауссову  
размытию контура, и вибронное расщепление 
возбужденного состояния, впервые отмеченное 
в [14], которое приводит к температурно-неза-
висимому асимметричному уширению конту-
ра. Поскольку плотность заряда на атоме влияет 
на энергию связи электронов остовного уров-
ня, любые изменения в химическом окружении, 
включая угловые координации и незначительные 
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изменения в межатомных расстояниях, непо-
средственно проявляются в РФЭ-спектре в ви-
де химических сдвигов пиков [15, 16]. Состав, 
структура и свойства углеродных пленок на про-
тяжении многих лет остаются предметом много-
численных исследований (см., например, [17, 18])

Особенностью метода РФЭС является ми-
нимальная (3-5 нм) глубина анализируемого 
слоя, определяемая длиной свободного пробега 
электронов в веществе [19, 20], поэтому этот ме-
тод может предоставлять информацию о самых 
верхних слоях углеродных пленок. Несмотря на 
длительную историю применения, проблемы 
интерпретации результатов РФЭС, в том числе 
проблемы анализа С1s-спектров и их сателли-
тов, остаются [21].

Влияние радиационных дефектов на электрон-
ную структуру материалов по данным рентгенов-
ской фотоэлектронной спектроскопии рассмо-
трено в работах [22, 23]. Сдвиги РФЭ-спектров 
по шкале энергий связи (Есв) авторы связывают с 
изменением средней степени ковалентности ме-
жатомных связей и эффективных зарядов атомов, 
а уширение – с разупорядочением химической и 
радиационной природы. Имеются РФЭС-иссле
дования радиационного повреждения ряда при-
родных ортосиликатов, в частности оливина, в 
которых сообщается о радиационно-индуциро-
ванном восстановлении металлического железа 
[24, 25]. В целом совместное применение методов 
спектроскопии комбинационного рассеяния света 
(спектроскопии КРС) и РФЭ-спектроскопии для 
анализа атомной и электронной структуры ради-
ационно-поврежденных материалов является пер-
спективным.

В связи с вышеизложенным, целью данной 
работы является качественная оценка разупо-
рядочения и определение массовой плотности 
сверхтонких поверхностных слоев магнетрон-
но напыленных углеродных пленок на основа-
нии РФЭС-данных до и после имплантации ио-
нов аргона и азота с энергией 30 кэВ при дозах 
D=1017 ион/см2.

МЕТОДИКА ЭКСПЕРИМЕНТА
Углеродные пленки толщиной 30±4 нм оса-

ждали на поверхность армко-железа методом 
магнетронного напыления на установке “Ка-
тод-1М” в среде аргона при постоянном токе [26, 
27]. В качестве мишени использовали графито-
вый лист толщиной 2 мм. По данным энерго-
дисперсионного микроанализа на электронном 
микроскопе Quattro S концентрация примеси 
кислорода в мишени составляла ~0.3 ат.%. 

Для очистки поверхности подложек от адсор-
бированных загрязнений и обеспечения лучшей 

адгезии напыляемого покрытия температуру 
подложек поддерживали на уровне 200°С. Тол-
щина пленок проверена методом атомно-сило-
вой микроскопии (АСМ) на зондовом микро-
скопе SOLVER 47 Pro в контактном режиме с 
использованием зонда CSG10.

Полученные углеродные пленки подвергали 
бомбардировке однозарядными ионами Ar+ или 
N+ с энергией Е = 30 кэВ и дозой D = 1017 ион/см2 
в установке ионной имплантации на базе УСУ-4 
с импульсным источником ионов “ПИОН-1М”. 
Имплантацию проводили в импульсно-перио-
дическом режиме с длительностью импульсов 
1 мс и частотой следования импульсов 100 Гц. 
Плотность потока ионов в импульсе составля-
ла 3.086∙1012  ион/см2. Имплантация ионов про-
ведена нормально к поверхности. Исследуемые 
образцы углеродных пленок располагали в цен-
тральной части пятна имплантации, что обеспе-
чивало равномерную плотность потока ионов на 
пленку. Нужно отметить, что проективный про-
бег ионов азота в углеродном материале значи-
тельно превышает толщину магнетронно напы-
ленной углеродной пленки.

Исследования сверхтонких (1–3 нм) по-
верхностных слоев углеродных пленок методом 
РФЭС проведены на электронном спектроме-
тре SPECS с энергоанализатором Phoibos-150 
с использованием немонохроматизированного 
MgKα излучения (hν=1253.6 эВ). Спектры полу-
чены при постоянной энергии пропускания ана-
лизатора 15 эВ с использованием линзовой моды 
Large Area. Анализируемая область поверхности 
представляет собой пятно диаметром 5 мм, т. е. 
полученные результаты относятся к средней ве-
личине по этой области. Глубина анализа опре-
деляется средней длиной свободного пробега 
электронов и для углеродных материалов может 
составлять единицы нанометров. РФЭС-спектры 
измерены с шагом сканирования 0.2 эВ. Экспе-
риментальные спектры обработаны с использо-
ванием программного обеспечения CasaXPS.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ
Массовая плотность известных форм угле-

рода на примере ранее аттестованных образ-
цов порошков наноалмаза статического синтеза 
(НАСС, частицы 100 нм) [28, 29] и высокоори-
ентированного пиролитического графита (ВО-
ПГ), используемого для настройки сканирую-
щих зондовых микроскопов типа SOLVER, была 
определена с использованием краткого аналити-
ческого выражения [8]:
	 ρ = 0.00312 · (εp)2 .	 (1)

Здесь eр равно расстоянию пика потерь π+σ от 
максимума основного пика C1s (в электронвольтах, 



ФИЗИКА МЕТАЛЛОВ И МЕТАЛЛОВЕДЕНИЕ      том 126       № 2       2025

	 ОЦЕНКА РАЗУПОРЯДОЧЕНИЯ И ОПРЕДЕЛЕНИЕ МАССОВОЙ ПЛОТНОСТИ	 171

рис. 1). Из данных РФЭС (рис. 2а) были полу-
чены значения массовой плотности 3.62 г/см3 
(eр =34.05 эВ) для НАСС и 2.27 г/см3 (eр =27.0 эВ) 
для ВОПГ. Это показало удовлетворительное со-
гласие значений массовой плотности углерод-
ных материалов, определенных методом РФЭС, 
с известными справочными данными [30, 31] 
(3.513 и 2.26 г/см3, соответственно). Особенности 
спектра энергетических потерь НАСС в области 
меньших энергий потерь возможно связать с на-
личием нарушенного сверхтонкого поверхност-
ного слоя порошинок НАСС, образующихся в 
процессе получения порошков и дающих вклад 
в общий рентгеноэлектронный спектр. 

В дальнейшем эти методические результаты 
были использованы для характеризации тонких 
ионно-модифицированных магнетронных пле-
нок на поверхности железа.

Результаты РФЭС- и КРС-спектроскопии по-
казывают, что магнетронно напыленные плен-
ки, во-первых, являются сильно разупорядочен-
ными. Об этом говорит существенное уширение 
с асимметризацией остовного РФЭС-пика С1s, 
в скобках указаны значения полной ширины на 
половине высоты (ПШПВ) (рис. 2а) и уширение 
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Рис. 1. Спектры потерь энергии фотоэлектронов: 1 – ВОПГ,  
2 – НАСС.

Рис. 2. РФЭ C1s-спектры (а) и спектры КРС (б): 1 – ВОПГ; 
2 – поликристаллический графит (мишень); 3 – углеродная 
пленка на железе; 4 – углеродная пленка на железе после 
имплантации ионов аргона; 5 – углеродная пленка на же-
лезе после имплантации ионов азота. В скобках указаны 
величины ПШПВ.
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пиков G и D в спектрах комбинационного рассе-
яния света (рис. 2б).

Во-вторых, магнетронные углеродные плен-
ки до ионной бомбардировки имеют существен-
но меньшую массовую плотность (в среднем 
1.98  г/см3) по сравнению с известной плотно-
стью массивного графита (2.26  г/см3), мишень 
из которой была использована при магнетрон-
ном напылении. Экспериментальные значения 
плотности были получены на основании данных 
eр, определенных относительно максимума пика 
остовного уровня С1s. Эта же методика позво-
лила в дальнейшем показать изменения массо-
вой плотности магнетронно напыленной тонкой 
углеродной пленки при импульсном облучении 
ионами разной массы и химической активно-
сти. Было определено, что импульсное облуче-
ние аргоном с Е = 30 кэВ вызывает дальнейшее 
разупорядочение тонкой пленки углеродно-
го материала (уширение пиков С1s на рис. 2а, 
спектр 4) и дальнейшее снижение его средней 
массовой плотности (до 1.81  г/см3). Таким об-
разом, средняя массовая плотность магнетрон-
ной пленки уменьшилась на 8%. При облучении 
ионами азота массовая плотность углеродной 
пленки уменьшается в меньшей степени (до 
1.86 г/см3). При этом из РФЭС-спектра N1s вид-
но, что основная доля атомов азота (до 89 ат. %) 

встраивается в двух неэквивалентных позициях 
в структуре углеродной пленки (рис. 3). Незна-
чительная часть азота (менее 10%) внедряется 
в пленку, по-видимому, без замещения атомов 
углерода, например в межслоевые пространства 
или поры. По данным ПО SRIM (Stopping and 
Range of Ions in Matter) [33], доля упруго отра-
женных от поверхности углеродной пленки ио-
нов азота составляет 2.8% и существенной роли 
не играет. Доля упруго отраженных ионов арго-
на от поверхности углеродного материала еще 
меньше и составляет 0.08%.

На рис. 4 представлены сателлиты π+σ 
С1s-спектров исследованных образцов после 
вычитания фоновой составляющей методом 
Ширли [32]. Спектр 1 соответствует сателлиту 
π+σ спектра С1s, полученного с ВОПГ в направ-
лении нормали к графеновой плоскости. Сател-
лит π+σ соответствует по основным параметрам 
энергии потерь (~27.15 эВ) сателлиту графита. 
Слабоинтенсивная линия слева 35-36 эВ мо-
жет быть приписана углероду в областях с на-
рушенной структурой. Пик справа – сателлит 
от поверхностного слоя углеродного материала, 
например взаимодействующего с адсорбирован-
ным кислородом или азотом.

Спектр 2 соответствует сателлиту π+σ спектра 
С1s магнетронной пленки углерода. Углеродная 

405 402 399 396
Энергия связи, эВ

C

B

A

Рис. 3. N1s-спектр углеродной пленки после имплантации 
ионов азота.
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Рис. 4. Сателлиты π+σ С1s-спектров образца ВОПГ (1), 
углеродной пленки на армко-железе (2), углеродной плен-
ки, подвергнутой имплантации ионов аргона с Е = 30 кэВ, 
D = 1017 ион/см2 (3), углеродной пленки, подвергнутой им-
плантации ионов азота с Е = 30 кэВ, D = 1017 ион/см2 (4).
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пленка, полученная методом магнетронно-
го напыления, менее плотная. Энергия потерь 
eр =25.22 эВ. Основа пленки – разупорядочен-
ный углерод с sp2-гибридизацией.

Спектр 3 – сателлит π+σ спектра С1s угле-
родной пленки после облучения ионами аргона 
с Е = 30  кэВ, D = 1017 ион/см2. Плотность гра-
фитовой составляющей уменьшается. Положе-
ние максимума пика незначительно смещается в 
сторону меньших энергий потерь eр, а сама плен-
ка является неоднородной, так как на спектре 
потерь возникает явная компонента с eр вблизи 
33 эВ, которую возможно связать с наличием об-
ластей с тетрагональной координацией атомов 
углерода.

Спектр 4 соответствует сателлиту π+σ спек-
тра С1s углеродной пленки после облучения ио-
нами азота с Е = 30 кэВ, D = 1017 ион/см2. Сател-
лит потерь π+σ очень похож на спектр сателлита 
исходной магнетронной пленки, но можно от-
метить незначительное повышение плотности 
исходной пленки и наличие следов компоненты 
на eр =32 эВ. 

Главным отличием магнетронно-напылен-
ных и ионно-модифицированных тонких угле-
родных пленок является отсутствие в спектрах 
потерь сателлита shake-up (eр = 7 эВ).

ЗАКЛЮЧЕНИЕ
Анализ C1s-спектров и спектров потерь π+σ 

от C1s-пика позволяет оценить разупорядо-
ченность, однородность и массовую плотность 
магнетронной углеродной пленки. 

Показано, что магнетронно напыленная тон-
кая (30±4 нм) углеродная пленка изначально яв-
ляется разупорядоченной со cредней массовой 
плотностью меньше плотности графитовой ми-
шени, а имплантация ионов аргона и азота при-
водит к дальнейшему разупорядочению пленки. 
Бомбардировка ионами аргона и азота не приво-
дит к существенному изменению средней мас-
совой плотности “графитовой” составляющей 
магнетронно напыленной углеродной пленки. 
В то же время бомбардировка ионами аргона с 
энергией 30 кэВ до дозы 1017 ион/см2 приводит к 
неоднородности пленки по структуре, в которой 
есть доля тетраэдрически координированного 
(алмазоподобного) углерода в областях с боль-
шей массовой плотностью. Главным отличием 
магнетронно-напыленных и ионно-модифици-
рованных тонких углеродных пленок является 
отсутствие в спектрах потерь в области shake-up 
π – пиков (eр = 7 эВ). 
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EVALUATION OF DISORDER AND DETERMINATION OF MASS 
DENSITY OF ION-MODIFIED THIN CARBON FILMS BY XPS

T. S. Kartapova1, *  and  F. Z. Gil’mutdinov1

1Udmurt Federal Research Center, Ural Branch of the Russian Academy of Sciences, Izhevsk, 426067 Russia
*e-mail: tskartapova@udman.ru

In this work, thin carbon films were deposited on the surface of armco-iron using magnetron sputtering of 
a carbon target in an Ar+ working gas environment. Then the carbon films were implanted with argon and 
nitrogen ions. In order to clarify the content of differently hybridized (i. e., in different chemical states) 
carbon atoms in the deposited material, the method of analyzing the photoelectron energy loss spectra was 
used in this work. It is shown that the satellite structure of c1s spectra, when analyzed jointly with XPS of 
the C1s core level, confirms the formation of a disordered structure of the carbon film and allows one to 
determine the mass density of thin carbon films.

Keywords: thin films, carbon, ion implantation, XPS, mass density
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