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Выполнено исследование структурных и магнитных свойств халькогенида V7Se8 с помощью рент-
геновской дифрактометрии, измерений намагниченности и спектроскопии ядерного магнитного 
резонанса (ЯМР) на ядрах 51V. Обнаружено упорядочение вакансий в катионных слоях ванадия с 
образованием суперструктуры 4С-типа. Оценено значение эффективного магнитного момента 
ионов ванадия, равное μэфф = 0.35 mВ. Выявлены существенные локальные зарядовые и магнитные 
неоднородности соединения V7Se8. Из температурных зависимостей магнитного сдвига линии 
ЯМР 51V и восприимчивости χ(T) в V7Se8 оценена константа сверхтонкого взаимодействия в ионах 
ванадия. Совместный анализ данных по сдвигам линии ЯМР и скорости спин-решеточной релак-
сации 51V показал, что 3d-электроны ванадия находятся в коллективизированном состоянии. В то 
же время с понижением температуры в системе V7Se8 развиваются антиферромагнитные корреля-
ции между магнитными моментами ванадия в соседних слоях.
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ВВЕДЕНИЕ
Халькогенид ванадия V7Se8 относится к клас-

су катион-дефицитных слоистых соединений 
М7Х8, где M – атом переходного металла, X – 
двухвалентный анион VI группы таблицы Мен-
делеева S, Se, Te. Для этих соединений характер-
но наличие вакансий в катионных слоях, а также 
образование разных сверхструктур в результате 
упорядочения вакансий и M атомов в слоях. Ва-
кансии в соединениях M7X8 со структурой типа 
NiAs распределяются в каждом втором базисном 
слое атомов переходных металлов, что являет-
ся основным принципом формирования этих 
сверхструктур (см. рис. 1).

Интерес к системам М7Х8 обусловлен тем, что 
соединения этой группы халькогенидов Fe7S8 
и Fe7Se8 являются ферримагнетиками с высо-
кими температурами Кюри 588–598 K [1, 2] и 
450–483 K [3, 4] соответственно. Магнитные мо-
менты железа в этих соединениях упорядочены 
ферромагнитно внутри слоев, а взаимодействие 

между слоями является антиферромагнитным. 
Из-за наличия вакансий в каждом втором слое 
магнитные моменты не скомпенсированы пол-
ностью, что и приводит к существованию резуль-
тирующей намагниченности и ферримагнетизму 
этих соединений [2, 5]. В попытках дальнейшего 
улучшения магнитных свойств Fe7S8 и Fe7Se8 бы-
ли проведены исследования влияния замещения 
железа атомами других 3d-элементов: титана, ва-
надия, хрома, марганца, кобальта и никеля. 

В работе [6] проведено исследование вли-
яния замещения железа в соединении Fe7Se8 
от 3 до 10 ат. % атомами Ti, V, Cr, Mn, Co и Ni. 
Показано, что наличие даже небольшого коли-
чества атомов переходных металлов приводит к 
сильным изменениям магнитных свойств. Так, 
при замещении железа титаном или ванадием 
до 10 ат. % происходит понижение эффектив-
ного магнитного момента железа от 5.8 до 4 μВ. 
Аналогичная тенденция наблюдается в пове-
дении μэфф при замещении до 10 ат. % атомами 
кобальта или никеля. Замещение по катионной 
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подрешетке атомами хрома или марганца прак-
тически не влияет на магнитное состояние ио-
нов железа. Анализ экспериментальных данных 
показал, что для объяснения изменения маг-
нитного состояния в таких системах нельзя опи-
раться ни на модель полностью локализованных 
моментов, ни на модель коллективизированных 
электронов [6].

Причина сильной концентрационной зави-
симости TC и намагниченности в Fe7-xVxSe8 до 
конца не выяснена. Непонятно, связана ли она 
с коллективизацией 3d-электронов ионов железа  
и/или с переходом ионов Fe из высокоспино-
вого в низкоспиновое состояние из-за измене-
ния кристаллического поля при изменении па-
раметров решетки. Нельзя также исключить и 
того, что ионы ванадия, обладая малым момен-
том, выступают в качестве разбавителя магнит-
ной подсистемы железа. Именно такая причина 
уменьшения TC и намагниченности при замеще-
нии железа слабомагнитным кобальтом была об-
наружена нами в Fe7-xCoxSe8 в работах [7, 8]. Так 
или иначе, для выяснения магнитного состояния 
ионов ванадия необходимо исследовать состав с 
полным замещением ионов железа ванадием.

В данной работе нами было выполнено ис-
следование структурных и магнитных свойств 
соединения V7Se8 посредством рентгенографии, 
ЯМР 51V и измерения магнитной восприимчи-
вости. 

ОБРАЗЦЫ И МЕТОДЫ ИССЛЕДОВАНИЯ
Поликристаллический образец V7Se8 был по-

лучен методом твердофазных реакций в вакуу-
мированной кварцевой ампуле. Исходные мате-
риалы: ванадий (чистота 99.95  %), селен марки 
“особо чистый” (чистота 99.999  %). Ампулу 
медленно нагревали в печи со скоростью около 
15°C/час до температуры 800°C с промежуточны-
ми выдержками при 200°C, 400°C и 600°C в те-
чение суток при каждой температуре. Затем об-
разец отжигали при температуре 800°C в течение 
2 недель. Далее следовали три гомогенизацион-
ных отжига (каждый в течение недели) в вакуу-
мированной кварцевой ампуле при 750°С. Перед 
каждым отжигом образец перетирали и спрессо-
вывали в таблетку. Такой способ позволил полу-
чить однородный однофазный материал.

Анализ фазового состава и исследование 
кристаллической структуры проводили с помо-
щью рентгеновского дифрактометра Bruker D8 
Advance c использованием позиционно-чувстви-
тельного детектора LynxEye (CuKα1,2-излуче-
ние). Экспериментальные и рассчитанные диф-
рактограммы соединения V7Se8 представлены на 
рис. 2. Рентгеноструктурный анализ показал, 
что соединение V7Se8 имеет слоистую кристал-
лическую структуру типа NiAs, кристаллизует-
ся в моноклинной сингонии (пространственная 
группа F2/m) с параметрами элементарной ячей-
ки: а = 12.463(4) Å, b = 7.079(4) Å, c = 23.900(3) Å, 
β = 90.961(3)°. Выяснено, что соединение V7Se8 
обладает сверхструктурой 4C [a02√3×2a0×4c0], 
где a0 и c0 являются параметрами базовой гекса-
гональной ячейки NiAs.

Полевые и температурные зависимости на-
магниченности V7Se8 измеряли на установке 
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Рис. 1. Элементарная ячейка 4С-сверхструктуры соедине-
ния V7Se8. Пунктирными линиями показана базисная эле-
ментарная ячейка.
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Рис. 2. Дифрактограмма соединения V7Se8 (пр. группа F2/m).  
Символы – наблюдаемые интенсивности, сплошная ли-
ния – расчет, внизу – разностная кривая между наблюда-
емыми и рассчитанными интенсивностями. Штрихами 
показано положение рефлексов в структуре, описывае-
мой пространственной группой F2/m.
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MPMS SQUID XL7 (Quantum Design) в интерва-
ле температур от 2 K до 350 K в магнитных полях 
до 70 кЭ. ЯМР-измерения на ядрах 51V выполне-
ны на импульсном спектрометре во внешнем маг-
нитном поле H0 = 92.8 кЭ в диапазоне температур 
от 20 до 300 K. Для исключения ЯМР-сигналов от 
металлической меди использована резонансная 
катушка из серебра. ЯМР-спектры на ядрах 51V  
получены с использованием стандартной ме-
тодики спинового эха p – tdel – 2p – tdel – echo.  
Длительность первого импульса выбирали 
p = 1 мкс, мощность радиочастотного усилите-
ля – N = 300 Вт. Задержка между импульсами 
tdel = 20 мкс. Спектры ЯМР на ядрах 51V, пред-
ставленные в работе, являются суммой фу-
рье-преобразований echo-сигналов, накоплен-
ных в требуемом частотном диапазоне с шагом 
Dn = 100 кГц. Скорость ядерной спин-решеточ-
ной релаксации Т1

−1 измеряли с использованием 
методики инвертирования и последующего вос-
становления ядерной намагниченности.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ
Температурная зависимость магнитной вос-

приимчивости χ(T) V7Se8 в температурном ин-
тервале от 2 до 350 K представлена на рис. 3. 
На вставке для наглядности χ(T) в диапазоне 
Т = 75–350 K показана в другом масштабе. Как 
видно из рисунка, зависимость χ(T) в исследуе-
мом халькогениде хорошо описывается законом 
Кюри–Вейса (сплошная линия на вставке ри-
сунка):
	 χ(T) = C/(T – q) + χ0,	 (1)
где С – постоянная Кюри, q – парамагнитная 
температура Кюри. Величина χ0 = cdia + cP + 
+ corb представляет собой сумму независящих от 
температуры вкладов, определяемых, соответ-
ственно, диамагнетизмом заполненных элек-
тронных оболочек, парамагнетизмом свобод-
ных носителей заряда (парамагнетизм Паули) 
и частичным размораживанием орбитальных 
моментов 3d-электронов ванадия. Значение  
χ0 = 5.14×10-4 emu/Э·моль было найдено из экс-
траполяции зависимости c от обратной темпе-
ратуры 1/Т в область 1/Т → 0, что соответствует 
Т → ∞ (см. вставку на рис. 4). На рис. 4 показа-
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температуры. Аппроксимация этой зависимо-
сти прямой линией легко позволяет получить 
следующие значения C = 0.0155 emu K/Э·моль,  

q = –1.5 K. Из C
N

k
A=
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3
 находим mэфф = 0.35 μВ.  

Близкие данному значению эффективного 

момента величины mэфф
Co � �= 0.20 μB и mэфф

Co � �= 0.36 μB  
были ранее получены нами для ионов кобальта в 
соединениях Co7Se8 и Fe4Co3Se8 соответственно 
[7, 8]. Как видно из рисунка, в температурной за-
висимости восприимчивости наблюдаются ано-
малии вблизи температур 50 K и 175 K. В работе 
[9] при этих же температурах наблюдали анома-
лии в поведении коэффициента линейного те-
плового расширения и электросопротивления в 
халькогениде V7Se8. Автор связал эти аномалии 
с возможными структурными фазовыми перехо-
дами в соединении, не конкретизируя, однако, 
детали данных переходов. Для того, чтобы точ-
но и детально описать структуру соединений до 
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Рис. 3. Температурная зависимость магнитной восприим-
чивости c(T) в V7Se8, измеренная во внешнем магнитном 
поле H = 10 кЭ. На вставке представлена зависимость χ(T) 
в диапазоне температур Т = 75 – 350 K. Сплошная линия – 
результат аппроксимации экспериментальных данных вы-
ражением χ(T) = C/(T – q) + χ0.
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ей. На вставке зависимость магнитной восприимчивости 
от обратной температуры 1/T.
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и после перехода и выделить основные факто-
ры, определяющие картину структурных изме-
нений, необходимо провести эксперименты по 
низкотемпературной рентгенографии.

Рис. 5 демонстрирует полевую зависимость 
намагниченности образца V7Se8, измеренную 
вплоть до H = 70 кЭ. Как видим, гистерезис 
практически отсутствует; небольшая спонтан-
ная намагниченность, по-видимому, обусловле-
на присутствием примесной магнитной фазы в 

образце, объем которой не превышает 1–2 %, по-
скольку не выявляется рентгеновской дифрак-
цией. Таким образом, измерение температурной 
зависимости магнитной восприимчивости и по-
левой зависимости намагниченности свидетель-
ствуют о том, что основная фаза образца V7Se8 в 
интервале температур от 2 K до 300 K является 
парамагнитной. Для определения возможной 
спонтанной намагниченности в основной фазе 
V7Se8 был использован метод Белова–Аррота. На 
вставке рис. 5 приведена зависимость квадрата 
намагниченности M2 от величины отношения 
H/M. Экстраполяция прямолинейного высоко-
полевого участка (показан линией на рисунке) 
этой зависимости к H/M = 0 приводит к явно от-
рицательному значению M2. Это говорит о том, 
что спонтанная намагниченность в нулевом по-
ле в основной фазе V7Se8 отсутствует. 

На рис. 6 представлен спектр ЯМР ядер 51V 
в поликристаллическом образце V7Se8, полу-
ченный при T = 293 K во внешнем магнитном 
поле H0 = 92.8  кЭ. Ядро изотопа 51V обладает 
спином 51I = 7/2 и электрическим квадруполь-
ным моментом e51Q = –0.051·10-24 см2. В случае 
симметрии кристаллической решетки ниже ку-
бической ЯМР-спектр ядер со спином I = 7/2 
представляет собой набор из 2I = 7 линий. Одна 
из линий соответствует центральному переходу 
(m = –1/2 ↔ +1/2), а 6 других – сателлитным пе-
реходам (m = ±3/2 ↔ ± 1/2), (m = ±5/2 ↔ ± 3/2) 
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Рис. 6. Спектр ЯМР ядер 51V в поликристаллическом об-
разце V7Se8 в магнитном поле Н0 = 92.8 кЭ при температуре 
T = 293 K и результат моделирования экспериментального 
спектра набором из трех резонансных линий 1–3.
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и (m = ±7/2 ↔ ± 5/2). В спектре на рис. 6 раз-
решенных сателлитных линий не наблюдается. 
Очевидно, это связано со значительным магнит-
ным уширением спектра ЯМР 51V, а также с ма-
лым значением квадрупольного момента e51Q. В 
данной работе для расчета формы линий ЯМР 
использована специальная программа модели-
рования спектров “Simul” [10], численно рас-
считывающая энергетические уровни и веро-
ятности переходов на основе диагонализации 
матричных элементов гамильтониана (квадру-
польного и зеемановского) ядерной системы. 
Программа позволяет определять компоненты 
магнитного сдвига Ka (α = x, y, z – главные оси 
тензора градиента электрического поля (ГЭП)).

Моделирование спектров 51V в V7Se8 пока-
зало, что полные экспериментальные спектры 
ЯМР могут быть описаны не менее чем тремя 
различными резонансными линиями, как это 
показано на рис. 6. Каждая такая линия, кото-
рые мы в порядке убывания интегральной ин-
тенсивности обозначили цифрами 1, 2, 3, харак-
теризуется собственным магнитным сдвигом Ka. 
Невозможность описать экспериментальный 
спектр одной резонансной линией свидетель-
ствует о наличии в V7Se8 кристаллографически 
и магнитно неэквивалентных позиций ванадия. 
Как упоминали ранее, в системе V7Se8 имеют-
ся вакансии в подрешетке ванадия. Их наличие 
может приводить к разнице в сдвигах Ka для от-
дельных групп ионов V, что и проявляется в раз-
личии соответствующих им резонансных линий. 
К сожалению, идентифицировать линии 1–3 по 
их интенсивностям без дополнительных иссле-
дований не представляется возможным. Тем не 
менее спектр ЯМР 51V на рис. 6 однозначно сви-
детельствует о существенной локальной неодно-
родности, как зарядовой, так и магнитной, халь-
когенида V7Se8. 

При анализе спектров ЯМР в поликристалли-
ческих образцах часто удобно перейти от компо-
нент Ka к изотропной Kiso = 1/3(Kx+Ky+Kz), акси-
альной Kax = 1/3(Kz – 1/2(Kx +Ky)) и анизотропной 
Kaniso = 1/2(Ky – Kx) частям тензора магнитного 
сдвига линии ЯМР. Моделирование спектров в 
программе “Simul” показало, что значения Kax 
и Kaniso для линий 1–3 во всем диапазоне темпе-
ратур близки к нулю, а температурная эволю-
ция Kiso для каждой из этих линий идентична. 
Поэтому на рис. 7 представлены данные Kiso(T) 
только для наиболее интенсивной линии 1. Как 
видим, с понижением температуры сдвиг Kiso(T) 
изменяется по закону Кюри–Вейса, повторяя 
температурную зависимость магнитной вос-
приимчивости c(Т). Однако при T < 90 K воз-
никает расхождение в поведении Kiso(T) и c(Т). 
В отличие от последней, сдвиг демонстрирует 

куполообразную температурную зависимость с 
широким максимумом в области Т = 70 K. 

В общем случае изотропный магнитный сдвиг 
линии ЯМР на ядрах 51V Kiso(T) можно записать в 
виде суммы трех основных вкладов [11]:

	 K T K K K Ts s
CW

iso orb iso iso( ) = + + ( ), , .	 (2)

Первое слагаемое в выражении (2) 

K
H H

s s=
+c cp

Bm
c  представляет собой вклад от 

электронов проводимости. Здесь Hс и Hcp – 
изотропные константы сверхтонкого взаимо-
действия (СТВ) контактного фермиевского 
и поляризации остова, соответственно. Кон-
тактный вклад в СТВ Hc обусловлен сверх-
тонким взаимодействием ядерного спина с 
валентными s-электронами. Он является поло-
жительным и существенен, как правило, в ме-
таллах. Слагаемое Hcp описывает сверхтонкое 
взаимодействие, обусловленное поляризаци-
ей неспаренными d-электронами заполнен-
ных s-оболочек иона. Этот вклад изотропен и, 
за редкими исключениями, отрицателен [12]. 
Величина cs – независящая от температуры па-
улиевская спиновая восприимчивость элек-
тронов проводимости. Второй вклад в сдвиг, 
орбитальный Кorb, обусловлен ван-флековским 
парамагнетизмом валентных d-электронов ио-
на. Он возникает вследствие частичного размо-
раживания орбитального момента во внешнем 
магнитном поле, не зависит от температуры и 
является положительным. Третье слагаемое в 
(2) обусловлено локализованными магнитны-
ми моментами (ЛММ) d-электронов. ЛММ на 
ионах ванадия могут давать два вида вкладов в 
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Рис. 7. Температурная зависимость магнитного сдвига 
ядер 51V Kiso в V7Se8; во вставке показана зависимость Kiso(c) 
с температурой в качестве параметра, аппроксимирован-
ная прямой линией.
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сдвиг резонансной линии ядер 51V. Первый – это 
вклад от собственных ЛММ ионов V, равный 
K T

H
Ts s,iso

intr intr

B

V( ) = ( )m
c , где Hintr – константа СТВ 

ядра ванадия с собственными электронами ио-
на, cs TV ( ) – кюри-вейсовская восприимчивость 
ЛММ на ионах V. Второй вклад обусловлен маг-
нитным полем, наводимым на ядра ванадия от 
ЛММ соседних ионов V. Данный вклад можно 

записать в виде: K T
H

Ts s,iso
tr tr

B

V( ) = ( )
�

m
c , где H tr

�  – 

константа наведенного СТВ с соседними иона-
ми ванадия. Она определяется главным образом 
степенью перекрытия d- и s-орбиталей соседних 
ионов переходных металлов. Таким образом, мы 
можем представить сдвиг Kiso(T) в виде завися-
щей и независящей от температуры частей:

	 K T
H H

T Ksiso
intr tr

B

V( ) =
+ ( ) +

m
c 0. 	 (3)

Отметим, что термин локализованные магнит-
ные моменты требует некоторого уточнения. Мы 
получили для эффективного магнитного момен-
та иона ванадия значение mэфф = 0.35 μB. Это не 
означает, что 3d-электроны полностью локализо-
ваны. Они достаточно подвижны, чтобы за вре-
мя измерения много раз перескочить с одного на 
другой узел решетки. При этом внутриатомное 
обменное взаимодействие поляризует эти кол-
лективизированные электроны (подобно внеш-
нему магнитному полю), приводя к возникнове-
нию нескомпенсированного магнитного момента 
иона. Температурная зависимость восприимчи-
вости таких коллективизированных электронов 
обычно близка к кюри-вейсовской [13]. 

В свою очередь, магнитная восприимчивость 
χ(T) также состоит из двух основных вкладов: за-
висящей от температуры по закону Кюри–Вей-
са спиновой восприимчивости χs TV ( ) и незави-
сящей от температуры c c c0 = +s orb: 

	 c c cT Ts( ) = ( ) +V
0. 	 (4)

Используя выражения (3) и (4), можно полу-
чить зависимость сдвига Kiso от χ с температурой 
в качестве параметра:

	K
H H

T
H H

Kiso
intr tr

B

intr tr

B
c

m
c

m
c( ) =

+ ( ) -
+

+0 0 , (5)

которая имеет форму прямой линии с танген-
сом угла наклона, равным H Hintr tr

B

+
m

. Такая 

параметрическая зависимость Kiso(χ) представ-

лена на вставке рис. 7. Аппроксимируя данные 
параметрической зависимости Kiso(χ) прямой 
(5), находим значение суммарной константы 

собственного и наведенного СТВ ядер ванадия 
H Hintr tr+  = 200(5) кЭ/mB. 

Известно, что один неспаренный электрон 
в 3d-оболочке переходного элемента создает 
на ядре изотропное поле поляризации остова 
Hcp = –125 кЭ [14], а в 4s-оболочке ванадия – 
контактное СТП Hc = 3400 кЭ [15]. В нашем слу-
чае суммарная величина СТП от коллективизи-
рованных электронов составляет 200(5) кЭ/mB. 
Следовательно, мы должны предположить, что 
в ионах ванадия имеется существенная 4s–3d-
гибридизация и что спиновая поляризация пе-
редается между соседними ионами V (посред-
ством наведенного СТВ Htr) не только через 3d-, 
но и 4s-орбитали. 

Как видно из рис. 3 и рис. 7, сдвиг Kiso(Т) и 
восприимчивость χ(Т) ведут себя различным 
образом ниже Т  =  90 K. Первый демонстриру-
ет максимум вблизи Т = 70 K, а χ(Т) имеет кю-
ри-вейсовскую зависимость вплоть до Т = 2 K. 
Подобное различие может быть вызвано сле-
дующими причинами. Во-первых, наличие ан-
тиферромагнитных (АФ) корреляций ближне-
го порядка. Как уже упоминали во введении, в 
магнетике Fe7Se8, имеющем ту же самую струк-
туру типа NiAs, что и V7Se8, магнитные момен-
ты железа упорядочиваются ферромагнитно 
внутри каждого слоя, но антиферромагнитно по 
отношению к двум соседним слоям. Т. е. между 
слоями имеются сильные АФ-корреляции. При 
наличии таких корреляций в парамагнитном 
состоянии халькогенида V7Se8 может возникать 
взаимная компенсация внутриплоскостного и 
межплоскостного вкладов в наведенное СТП 
Htr. В итоге это поле, а следовательно и величина 
Kiso(Т), будет уменьшаться с понижением темпе-
ратуры. Подобный эффект мы наблюдали ранее 
в халькогениде Fe4Co3Se8 [8]. Казалось бы, при 
наличии АФ-корреляций также должна откло-
няться от кюри-вейсовского поведения и маг-
нитная восприимчивость, но этого не наблю-
дается. Дело в том, что магнитный сдвиг ЯМР 
пропорционален однородному вкладу в спиновую 
восприимчивость c(q  =  0). Молярная воспри-
имчивость χ(T) может включать в себя и неодно-
родные по образцу слагаемые. К ним относятся 
вклады от различного рода примесей, а также 
магнитных или немагнитных кластеров, распре-
деленных внутри исследуемого образца. По-ви-
димому, с такого рода микронеоднородностями 
мы имеем дело в образце V7Se8. Они вносят су-
щественный вклад в χ(T), особенно при низких 
температурах, но не в сдвиг линии ЯМР.

Результаты измерений скорости спин-ре-
шеточной релаксации (СРР) T1

1-  ядерной на-
магниченности Mz = 51γnħ<Iz(t)> ионов ванадия 
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в соединении V7Se8 представлены на рис. 8. 
Спин-решеточная релаксация макроскопиче-
ской ядерной намагниченности Mz(t) к термоди-
намическому равновесному значению M0 проис-
ходит за характерное время Т1.

В приближении свободного электронного га-
за в металлах величина Т1

–1 растет пропорцио-
нально температуре. При этом выполняется так 
называемое соотношение Корринги [16]:

	
1 4

1

2
2

T
k

K T
K

s






= 





γ
γ

πn

e

B

�
, 	 (6)

где γe и γn – электронное и ядерное гиромаг-
нитные отношения. Данное соотношение яв-
ляется следствием того, что релаксация и сдвиг 
в металле определяются соответственно флук-
туирующей и статической частями локального 
магнитного поля, обусловленного сверхтонким 
взаимодействием ядер с электронами проводи-
мости. Кроме того, в 3d-металлах может быть 
значительным так называемый орбитальный 

вклад в СРР 1

1T




 orb

, вызываемый флуктуациями 

орбитальных токов d-электронов. В отличие от 
орбитального вклада в магнитный сдвиг слагае-

мое 1

1T




 оrb

 никак не связано с орбитальной вос-

приимчивостью corb и потому не может быть вы-
ражено через сдвиг Korb. Этот вклад определяется 
непосредственно плотностью d-электронных 

состояний на уровне Ферми и так же, как 1

1T
K







,  

пропорционален температуре [17]. Таким обра-
зом, в 3d-металлах температурная зависимость 
скорости СРР может иметь корринговский тип, 
т. е. 1/T1 ∝ T. Флуктуации локальных магнитных 

моментов также могут приводить к ядерной 
спин-решеточной релаксации. Данный вклад в 
парамагнитной области является независящим 
от температуры, 1

1T






=
lmm

const [18].

Рис. 8 демонстрирует, что в V7Se8 в диапазоне 
температур 300–90 K скорость СРР T T1

1- ( ) ядер-
ных моментов ванадия пропорциональна темпе-
ратуре, т. е. имеет коррингоподобный характер, 
что является дополнительным подтверждением 
того, что данное соединение, по крайней мере в 
этом диапазоне температур, – это паулиевский 
парамагнитный металл. Кроме того, экстраполя-
ция зависимости T T1

1- ( ) в область низких темпе-
ратур приводит в рамках погрешности к нулево-
му значению скорости СРР. Это свидетельствует 
об отсутствии вклада от ЛММ и о том, что СРР 
ядерных магнитных моментов ванадия опреде-
ляется в основном электронами проводимости. 

Ниже 90 K температурная зависимость ско-
рости СРР приобретает нелинейный куполо-
образный вид. Подобная температурная зави-
симость характерна для систем с АФ ближним 
порядком. В этом случае пик в T T1

1- ( ) возникает 
при температуре, при которой в спектре анти-
ферромагнитно коррелированных флуктуаций 
появляется максимум на частоте ЯМР. Таким 
образом, результаты измерения СРР ядерных 
моментов ванадия также свидетельствуют, что 
ниже T = 90 K в халькогениде V7Se8 формируется 
ближний АФ-порядок, однако дальнего магнит-
ного порядка не возникает вплоть до самых низ-
ких температур. 

ЗАКЛЮЧЕНИЕ
Выполнено исследование структурных и маг-

нитных свойств соединения V7Se8 посредством 
рентгенографии, измерений намагниченности и 
использования ядерного магнитного резонанса 
ядер 51V. 

Рентгеноструктурный анализ показал, что 
соединение V7Se8 обладает сверхструктурой 4C 
[a02√3×2a0×4c0], где a0 и c0 являются параметра-
ми базовой гексагональной ячейки NiAs.

Обнаружено, что температурная зависимость 
магнитной восприимчивости χ(T) имеет анома-
лии в области температур Т = 175 K и Т = 50 K, 
которые свидетельствуют о возможных струк-
турных фазовых переходах в V7Se8 при данных 
температурах. Выяснение типа этих перехо-
дов требует дополнительных исследований. Из 
температурной зависимости восприимчивости 
определено значение эффективного магнитного 
момента ионов ванадия μэфф = 0.35 mB. Столь ма-
лое значение момента свидетельствует о том, что 
3d-электроны ванадия коллективизированы. 
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Рис. 8. Температурная зависимость скорости ядерной 
спин-решеточной релаксации T1

–1. Штриховая линия – 
аппроксимация данных при T ≥ 90 K прямой линией.
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Анализ спектров ЯМР 51V выявил существен-
ную локальную неоднородность как зарядовую, 
так и магнитную, соединения V7Se8. Из темпера-
турных зависимостей сдвига и восприимчивости 
в V7Se8 сделана оценка константы суммарного, 
собственного и наведенного сверхтонкого взаи-
модействия H Hintr tr+  = 200(5) кЭ/mB ядерных и 
электронных магнитных моментов ванадия. Об-
наружена куполообразная температурная зави-
симость магнитного сдвига линии ЯМР 51V при 
температурах ниже 90 K. Такое поведение сдвига 
указывает на возникновение сильных антифер-
ромагнитных корреляций между магнитными 
моментами ванадия в соседних слоях при низ-
ких температурах.

О малом значении μэфф ионов ванадия кос-
венно свидетельствуют также данные по темпе-
ратурной зависимости скорости спин-решеточ-
ной релаксации ядерных моментов 51V, которая 
демонстрирует коррингоподобное поведение и 
отсутствие вклада от локализованных магнит-
ных моментов ионов ванадия при Т ≥ 90 K. На-
личие же отклонения от корринговской темпе-
ратурной зависимости скорости ССР ниже 90 K 
указывает на наличие сильных АФ-корреляций 
в спектре спиновых флуктуаций халькогенида 
V7Se8. 

Исследование выполнено за счет гранта Рос-
сийского научного фонда (проект № 22-12-00220 
https://rscf.ru/project/22-12-00220/, ИФМ УрО 
РАН, Свердловская обл.). Работа выполнена с 
использованием оборудования ЦКП “Испыта-
тельный центр нанотехнологий и перспектив-
ных материалов” и “Отдел криогенных техноло-
гий” ИФМ УрО РАН.
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MAGNETIC STATE OF VANADIUM IN CHALCOGENIDE V7Se8

N. A. Utkin1, 2,  M. E. Kashnikova1, 2,  Yu. V. Piskunov1, *,  A. G. Smolnikov1,  V. V. Ogloblichev1,  
A. F. Sadykov1,  A. P. Gerashchenko1,  N. V. Selezneva2,  and N. V. Baranov1, 2
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The structural and magnetic properties of V7Se8 chalcogenide were studied using X-ray diffractometry, 
magnetic susceptibility measurements and nuclear magnetic resonance (NMR) spectroscopy on 51V nuclei. 
The ordering of vacancies in vanadium cationic layers with the formation of a 4C-type superstructure was 
found. It is estimated that the effective magnetic moment of vanadium ions is µeff = 0.35 µB. A significant 
local charge and magnetic heterogeneity of the V7Se8 compound has been revealed. The hyperfine inter-
action constant in vanadium ions is estimated from the temperature dependences of the magnetic shift of 
the NMR 51V line and the susceptibility χ(T) in V7Se8. A joint analysis of the NMR line shift data and the 
spin-lattice relaxation rate of 51V showed that the 3d-electrons of vanadium are in a itinerant state. At the 
same time, with decreasing temperature in the V7Se8 system, antiferromagnetic correlations are induced 
between the magnetic moments of vanadium in adjacent layers.

Keywords: transition metal chalcogenides, nuclear magnetic resonance, spin-lattice relaxation, hyperfine fields
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