
ФИЗИКА МЕТАЛЛОВ И МЕТАЛЛОВЕДЕНИЕ, 2025, том 126, № 1, с. 123–128

123

	  ПРОЧНОСТЬ И ПЛАСТИЧНОСТЬ 	

УДК 669.295

ИССЛЕДОВАНИЕ ВЛИЯНИЯ АКУСТИЧЕСКИХ ПОЛЕЙ 
НА МЕХАНИЧЕСКИЕ И ТЕХНОЛОГИЧЕСКИЕ СВОЙСТВА 

ТЕХНИЧЕСКОГО ТИТАНА
© 2025 г.   Е. Ю. Ремшевa, *,  Г. А. Воробьеваa,  А. И. Олехверa,  Т. М. Абу Фаддаa

aБГТУ “ВОЕНМЕХ” им. Д.Ф. Устинова, 1-я Красноармейская ул., 1, Санкт-Петербург, 190005 Россия
*e-mail: remshev@mail.ru

Поступила в редакцию 27.03.2024 г. 
После доработки 06.11.2024 г. 

Принята к публикации 17.11.2024 г.

Исследовано влияние аэроакустической обработки (ААО) на механические и технологические 
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ААО на процесс пластической деформации ВТ1-0 (снижение прочности на ~200 МПа) аналогич-
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ВВЕДЕНИЕ
Исследования влияния магнитных полей, 

ультразвука (УЗ) и электрического тока на физи-
ческие, механические и технологические свой-
ства кристаллических тел [1–11] установили, 
что обработка с помощью физических полей 
позволяет создавать материалы с новыми, бо-
лее высокими свойствами [1, 5, 9] и с возмож-
ностями изготовления продукции методами, 
использующими высокие скорости деформации 
при пониженных напряжениях и температурах. 
Разупрочнение (пластический эффект – ПЭ) 
при наложении механических колебаний (УЗ) 
на квазистатическую механическую нагрузку 
образцов – это акустопластический эффект – 
АПЭ [6, 7]; разупрочнение под влиянием элек-
трического тока, который пропускается в процес-
се пластического деформирования образцов –  
электропластический – ЭПЭ [8–11] и под дей-
ствием постоянного магнитного поля – магни-
топластический – МПЭ [2–4] эффекты. Влия-
ние физических полей на свойства материалов 
часто используют при модернизации существу-
ющих технологических процессов и создании 
новых технологий. Для получения изделий с 
заданными физическими, эксплуатационными 
свойствами и структурой материала требуется 

изучение процессов, протекающих в материа-
лах, ранее не подвергавшихся этим видам об-
работки, так как автоматическая воспроизво-
димость результатов воздействия физических 
полей на свойства разных материалов практиче-
ски не наблюдается. Это относится и к влиянию 
аэротермоакустической (АТАО) и аэроакусти-
ческой (ААО) обработок, реализуемых в частот-
ном диапазоне 600–2000 Гц, на структуру сталей 
и сплавов с целью формирования требуемого 
комплекса их механических и технологических 
свойств [12–16]. В работе исследовали влияние 
аэроакустической обработки на механические и 
технологические свойства титана ВТ1-0, кото-
рый относится к широко применяемым корро-
зионностойким материалам.

МАТЕРИАЛ, ТЕХНОЛОГИИ ОБРАБОТКИ  
И МЕТОДЫ ИССЛЕДОВАНИЯ 

Исследование влияния ААО на свойства ти-
тана проводили на прутках ВТ1-0; прутки сва-
рены. Механические свойства прутков в исход-
ном состоянии (табл. 1. режим 1/1) находились 
в пределах: σВ=355–540 МПа; δ=19–20%; ψ=38–
50%, определяемых ГОСТом 26492–85 для прут-
ков ВТ1-0. Сварка не вызвала значительного 
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изменения механических свойств. Однако свар-
ка повышает уровень остаточных напряжений, 
для снижения которых в схеме технологических 
процессов, включающих сварку, предусмотрен 
отжиг. Часть образцов перед ААО были подвер-
гнуты отжигу (650°C в течение 2 ч).

К числу параметров аэроакустического воз-
действия при проведении ААО относятся: тем-
пература, скорость охлаждения, скорость пото-
ка газа, амплитудно-частотные характеристики, 
которые регулируются за счет варьирования ге-
ометрических характеристик установки, и время 
термоакустического воздействия. Рабочим га-
зом может быть воздух, азот и другие среды. При 
проведении ААО может осуществляться воз-
действие температурных и акустических полей 
(АТАО) с целью формирования свойств матери-
алов в требуемом направлении или только аку-
стических полей и потока газа – ААО. ААО может 
быть использована как упрочняющая обработ-
ка, так и как обработка, снижающая остаточные 
напряжения, полученные при предшествующей 
обработке в материале изделия, и повышающая 
пластичность, что определяется параметрами 
режимов обработки [12–16]. Как упрочняющая 
ААО представляет собой комплексную обработ-
ку, включающую предварительную обработку, 
которой может быть холодная пластическая де-
формация или термическая обработка с охлаж-
дением в традиционных средах (вода, масло, воз-
дух) или в мощном акустическом поле звукового 
диапазона частот, при одновременном воздей-
ствии потока газа в диапазоне скоростей от де-
сятка до сотен метров в секунду. При этом мате-
риал охлаждается до отрицательных температур 
в расширяющемся потоке газа, т. е. дополнитель-
но реализуется обработка холодом [15, 16]. Одна 
из основных операций в технологии АТАО – об-
работка деталей, включающая криогенное воз-
действие, в мощном акустическом поле звуково-
го диапазона дискретных частот (600–1200 Гц) с 
уровнем звукового давления до 150–160 дБ в по-
токе газа в резонаторе газоструйного генератора 
звука (ГГЗ).

Образцы в исходном состоянии были подвер-
гнуты аэроакустическому воздействию в течение 
10 мин при 20°C, без предварительного нагрева, 
с использованием специального технологиче-
ского оборудования, включающего ГГЗ. В резо-
натор ГГЗ устанавливали контейнер с образца-
ми в исходном состоянии и прошедшими отжиг. 
Обработку образцов проводили в резонаторе 
ГГЗ по режимам: ААО1 и ААО2, отличающимся 
амплитудно-частотными характеристиками. 

Механические свойства определяли при ис-
пытании пятикратных цилиндрических образ-
цов на статическое растяжение по ГОСТ 1497–84 

на машине Shimadzu AGX-100кН. Погрешность 
определения нагрузки при испытаниях не пре-
вышает 1%, а напряжения (σв, σ0.2) – 5 МПа. В 
процессе испытаний образцов синхронно запи-
сывали диаграммы “нагрузка–деформация” и 
фиксировали время деформирования материа-
ла. Это позволило определить скорость дефор-
мации (изменение относительного удлинения 
(%) в единицу времени; ее размерность %/с). 

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ  
И ИХ ОБСУЖДЕНИЕ

Результаты механических испытаний на ста-
тическое растяжение образцов из ВТ1-0 в исход-
ном состоянии, после отжига, отжига и обработ-
ки по режимам ААО1 и ААО2 приведены в табл. 1.

Разрыв всех образцов происходил вне зоны 
сварки прутков, что позволяет исключить сварку 
в качестве фактора, оказывающего значительное 
влияние на свойства материала. Два образца (№ 7, 
9) не разрушились в процессе испытания, так как 
уровень нагрузки достиг величины, которая ниже 
уровня чувствительности оборудования, опреде-
ляющего момент разрушения образца.

Отжиг и обработка по режиму № 3 с ААО1 су-
щественно не изменяют прочность титана, не-
сколько повышая его пластичность по сравне-
нию с характеристиками в исходном состоянии. 
Обе характеристики прочности σ0.2 и σВ снижа-
ются, если после отжига проведена ААО2 (режим 
№ 4), более значительно снижается уровень ус-
ловного предела текучести – σ0.2, при повышении 
пластичности. Один из образцов, обработанных 
по режиму 4 (4/7), не разорвался при испытании 
на растяжение (значения σВ = 104–120 МПа ни-
же уровня чувствительности машины). Обработ-
ка по режиму № 5 с ААО2 без предварительного 
отжига оказывает на прочность ВТ1-0 влияние 
аналогичное обработке по режиму № 4; средний 
уровень σВ = 184 МПа, пластичность несколь-
ко меньше, чем при наличии предварительного 
отжига δ = 31%. При испытании не разорвался 
образец № 5/9 также из-за низких значений σВ. 
Относительное удлинение (δ) неразорвавшихся 
образцов определяли по величине равной ΔL в 
момент снижения напряжения до “0”. Диаграм-
мы растяжения образцов титана после указан-
ных выше обработок представлены на рис. 1.

В отожженном состоянии (рис. 1а, обр. № 2/4) 
при напряжении выше 400 МПа деформация с 
9 до 24% идет при незначительно меняющей-
ся нагрузке (~10–15 МПа), такой вид диаграмм 
растяжения характерен и для других образцов, 
прошедших разные виды обработки. При об-
работке по режиму № 3/5 (ААО1 после отжига) 
вид диаграммы практически аналогичен пред-
ставленному на рис. 1а, так же, как и величина 
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максимального напряжения (σВ). ААО2 с предва-
рительным отжигом – обр. № 4/6 (рис. 1б) суще-
ственно уменьшает уровень максимального на-
пряжения при деформации.

После аналогичной обработки – обр. № 4/7 
(рис. 1в) максимальное напряжение снижается 
до 120 МПа, при этом образец не разрушился в 
процессе испытания. В области деформаций с 
12% до 28% этого образца небольшой, ступен-
чатый рост нагрузки свидетельствует о проте-
кании деформации двойникованием. Обработ-
ка ААО2 без предварительного отжига (рис. 1г, 
обр. № 5/10) также снижает максимальное на-
пряжение; образец № 5/9 (рис. 1д) не разру-
шился в процессе испытания по вышеуказанной 

причине; пластичность при этом режиме ни-
же, чем при режиме обработки, в котором ААО2 
предшествует отжиг. 

Скорость деформации титана в процессе ис-
пытания определяли в области пластической де-
формации: V1 – от значений σ0.2 – до достижения 
условного напряжения σВ (область поперечного 
скольжения дислокаций) и V2 – от уровня значе-
ний σВ (с момента образования шейки в образце) 
до разрушения или снижения нагрузки до “0”. 
Величину деформации титана определяли в зо-
нах: Δ1 – при изменении максимальной нагруз-
ки, не превышающем 10 МПа; Δ2 – при пример-
но постоянной нагрузке, результаты приведены в 
табл. 2.

Таблица 1. Механические свойства образцов (сварка) из титана ВТ1-0 в исходном состоянии, после отжига и 
аэроакустической обработки

№ режима/ 
№ образца Вид обработки σ0.2,

МПа
σВ,

МПа
δ,
%

ψ,
%

1/1 Исходное состояние 337 408 29 63
1/2 Исходное состояние 340 418 33 65
2/3 Отжиг 309 398 34 63
2/4 Отжиг 331 411 31 63
3/5 Отжиг + ААО1 310 398 35 64
4/6 Отжиг + ААО2 172 251 34 63
4/7* Отжиг + ААО2 55 119 37* 65
4/ 114 185 35 64

5/8 ААО2 199 282 36 64
5/9* ААО2 62 104 28* 60
5/10 ААО2 75 166 33 64

5/ 102 184 31 63
*Образцы не были разрушены в процессе испытания. При отсутствии номера образца приведены средние значения четырех 
испытаний.

Таблица 2. Влияние режима обработки титана ВТ1-0 на скорость деформации и параметры диаграммы растяже-
ния

№ режима/  
№ образца Вид обработки σВ,

МПа V1*, %/c V2, %/c Δ1**, % Δ2, % σР, MПа

1 Исх. состояние 413 0.41 0.48 15 6 280
2 Отжиг 405 0.52 0.52 15 7 274
3 Отжиг+ ААО1 398 0.51 0.52 15 10 272

4/6 Отжиг+ ААО2 251 0.53 0.54 16 8 120
4/7 Отжиг+ ААО2 119 1.0 0.5 18 8 –
5/1 Исх. состояние+ ААО2 283 0.53 0.52 20 7 160
5/2 Исх. состояние+ААО2 104 0.53 0.52 17 5 –
5/3 Исх. состояние+ААО2 166 0.52 0.52 21 7 40

*V1, V2, %/c – скорости деформации образца из титана, соответствующие участкам диаграммы растяжения: 1 – от 
σ0,2 до достижения σВ; 2 – от σВ до разрушения или снижения нагрузки до “0”.
**Δ1, Δ2, % – относительная деформация титана: Δ1 – в зоне изменения максимальной нагрузки, не превышаю-
щего 10МПа; Δ2 – при постоянной нагрузке. Образцы 4/7 и 5/2 не разорвались. При отсутствии номера образца 
приведены средние значения четырех испытаний.
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По сравнению с исходным состоянием после 
отжига скорость деформации возрастает наибо-
лее интенсивно в области до достижения напря-
жений σВ – V1 при сохранении значений осталь-
ных параметров. ААО1 после отжига (режим 
№ 3) несколько увеличивает деформацию мате-
риала – Δ2 при постоянной нагрузке.

Более существенное влияние на свойства 
ВТ1-0 оказывает обработка ААО2 (режимы 

№ 4, 5), реализуемая как после отжига, так и в 
его отсутствии; наряду со значительным сниже-
нием σВ и σ0,2 возрастает скорость деформации V1 
и величина деформации Δ1, а при предваритель-
ном отжиге повышаются значения V2 и Δ2. Вели-
чина деформации при постоянной нагрузке при 
обоих видах ААО возрастает. Напряжение, при 
котором происходит разрыв образца – σР, сни-
жается при обработке титана по режимам № 4, 5.
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Рис. 1. Диаграммы растяжения образцов титана ВТ1-0: а – отжиг; б, в – отжиг, ААО2; г, д – ААО2 без отжига. Образцы на 
рис. 1в и д не разорвались.
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Увеличение скорости деформации и сниже-
ние усилия деформации после ААО приводит не 
только к снижению энергетических затрат, но и 
повышает ресурс оборудования, в том числе по-
вышая износостойкость деталей оборудования.

В работе [8] исследовали электропластиче-
ский эффект при растяжении проволоки ди-
аметром 0.8 мм из титана ВТ1-0. Наибольшее 
снижение прочности от воздействия ЭПЭ для 
проволоки титана ВТ1-0 было в ее отожженном 
состоянии и достигало ~200 МПа.

Воздействие аэроакустической обработки 
(снижение предела прочности с ~410 МПа (исход-
ное состояние) до средних значений ~185 МПа 
(обработка по режиму № 5)) аналогично по эф-
фективности влиянию ЭПЭ. Следовательно, это 
позволяет рассматривать аэроакустическую об-
работку как технологию воздействия на титан 
ВТ1-0, после проведения которой в процессе 
пластической деформации наблюдается акусто-
пластический эффект – АПЭ. 

В металлах с высокой энергией дефектов упа-
ковки, к которым относится титан, в процес-
се деформации образуются плоские скопления 
дислокаций. На стадии множественного сколь-
жения в результате пересечения дислокаций 
разных систем образуются барьеры, дислокации 
тормозятся у них. При высокой энергии дефек-
тов упаковки поперечное скольжение проис-
ходит легко. Скопления дислокаций будут об-
ходить барьеры и вновь взаимодействовать с 
дислокациями других систем и образовывать 
новые барьеры. 

В процессе проведения ААО производилось 
многоциклическое комплексное воздействие на 
металл нестационарного потока газа и дискрет-
ных акустических полей с частотой 0.4–2.0 кГц, 
под влиянием которых предположительно проис-
ходит отрыв дислокаций от барьеров, увеличение 
подвижности дислокаций, определяющее сниже-
ние прочности, повышение пластичности и сни-
жение внутренних напряжений [12–16].

Авторами ранее исследовалось влияние ААО 
на величину остаточных напряжений (ОН) в 
сплаве ВТ23. Максимальный уровень растягива-
ющих ОН на поверхности в исходном состоянии 
достигал 400 МПа, снижаясь до 300 МПа на глу-
бине 700 мкм, и далее не изменялся. После АТАО 
величина ОН в сплаве уменьшилась до 230 МПа 
на поверхности. Отжиг снижает ОН на поверхно-
сти титана ВТ1-0 с 1035 МПа до 942 МПа. Сле-
довательно, можно предположить, что ААО также 
снижает и величину ОН в титане ВТ1-0. 

ЗАКЛЮЧЕНИЕ
Аэроакустическая обработка (ААО) тита-

на ВТ1-0, оказывает существенное влияние на 
его механические и технологические свойства. 

После ААО увеличивается относительное удли-
нение, падает временное сопротивление и ус-
ловный предел текучести. Это снижает усилия 
деформации, увеличивает скорость деформа-
ции, т. е. наблюдается акустопластический эф-
фект. Эффективность АПЭ аналогична электро-
пластическому эффекту (ЭПЭ) для проволоки 
из ВТ1-0. Отжиг перед ААО2 дополнительно уве-
личивает пластичность титана. Преимуществом 
ААО является то, что обработка проводится до 
пластической деформации при 20°C, и следо-
вательно не требуется разработки специальной 
установки для деформации сплавов, которая не-
обходима для достижения ЭПЭ при деформиро-
вании металлов.

Кроме того, увеличение скорости деформа-
ции и снижение усилия деформации приводит 
не только к снижению энергетических затрат, но 
и повышает ресурс оборудования, в том числе 
повышая износостойкость деталей штампов. 
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STUDY OF THE INFLUENCE OF ACOUSTIC FIELDS  
ON THE MECHANICAL AND TECHNOLOGICAL PROPERTIES  

OF TITANIUM VT1-0
E. Y. Remshev1, *,  G. A. Vorob’eva1,  A. I. Olekhver1,  and  T. M. Abu Fadda1

1BSTU “VOENMEH” named after D.F. Ustinov, St. Petersburg, 190005 Russia
*e-mail: remshev@mail.ru

The effect of aeroacoustic treatment (AAT) on the mechanical and technological properties of titanium 
VT1-0 is investigated. The dependence of the strength and ductility characteristics on the type of prelim-
inary titanium treatments has been established: annealing, AAT and only AAT before plastic deformation 
significantly reduce the value of σB and increase plasticity, which reduces deformation forces, increases the 
deformation rate.The effect of pre-treatment on the process of plastic deformation of  VT1-0 (a decrease 
in strength by ~ 200 MPa) is similar in terms of the effect of the electroplastic effect (EPE) on the strength 
of the wire from VT1-0.

Keywords: titanium VT1-0, heat treatment, aeroacoustic treatment, plastic deformation, electroplastic effect
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