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Методом атомно-зондовой томографии исследовалось влияние термического старения на нано-
структуру трех дисперсно-упрочненных оксидами сталей с различными системами легирования: 
Eurofer ODS, 10Cr ODS и KP-3 ODS. Исследуемые стали выдерживались при 650°С в течение 
500 и 1000 ч. Во всех состояниях обнаружены наноразмерные кластеры, обогащенные по Y, O и 
Cr, а также по V, Ti и Al в зависимости от системы легирования стали. Исследование нанострук-
туры сталей после термического старения в течение 500 ч во всех сталях показало значительный 
рост объемной плотности кластеров, в то время как после 1000 ч старения их объемная плотность 
(число кластеров в единице объема) уменьшалась в Eurofer ODS и 10Cr ODS, или сохранялась на 
том же уровне в KP-3 ODS. После 500 ч старения наблюдается сохранение (10Cr ODS, KP-3 ODS)  
или увеличение (Eurofer ODS) среднего размера кластеров, а при 1000 ч средний размер сохра-
нялся в Eurofer ODS и 10Cr ODS или испытывал небольшое уменьшение в KP-3 ODS. Анализ 
изменения наноструктуры показал сначала рост объемной плотности кластеров (при сохранении 
или росте среднего размера) во всех сталях при длительности старения до 500 ч, соответствующий 
стадии зарождения новых кластеров. После старения в течение 1000 ч обнаружено уменьшение 
объемной плотности, что соответствует стадии коалесценции. Данные закономерности также 
подтверждаются анализом изменения концентрации химических элементов в матрице.
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ВВЕДЕНИЕ
Дисперсно-упрочненные оксидами (ДУО) 

сплавы и стали демонстрируют превосходную 
высокотемпературную прочность при растяже-
нии и сопротивление ползучести по сравнению с 
традиционными сталями [1–3]. Данный фактор 
делает ДУО стали крайне привлекательными для 
применения как при повышенных термических 
нагрузках (например, в качестве материалов тур-
бин двигателей [4]), так и при комбинированных 
термических и радиационных воздействиях (в 
качестве материалов перспективных ядерных и 
термоядерных энергетических установок [5, 6]). 
Повышенные характеристики жаропрочности и 

радиационной стойкости ДУО сталей обеспечи-
ваются наличием в их структуре большого числа 
равномерно распределенных оксидных частиц 
[4, 7, 8]. Учитывая эту особенность, важным яв-
ляется исследование стабильности дисперсных 
включений в условиях, характерных для эксплу-
атации. 

В результате комплементарных исследований 
методами просвечивающей электронной ми-
кроскопии (ПЭМ), атомно-зондовой томогра-
фии (АЗТ), малоуглового рассеяния нейтронов 
(МУРН) и малоуглового рентгеновского рассе-
яния (МУРР) установлено, что в матрице ДУО 
сталей присутствуют не только мелкие оксидные 
частицы (<10 нм), но и наноразмерные кластеры 
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(< 4 нм) [9–14]. Хотя кластеры вносят малый 
вклад (относительно оксидных частиц) в ме-
ханические свойства ДУО-сплавов в исходном 
состоянии [15, 16], они могут выступать в роли 
центров зарождения оксидных частиц [17, 18], 
что важно для общей стабильности наноструку-
ры ДУО-материалов в условиях эксплуатации. 
При этом установлено, что в процессе облуче-
ния под влиянием термически- и радиацион-
но-индуцированной диффузии происходит вза-
имодействие оксидов и кластеров, приводящее 
к зарождению мелких оксидов из кластеров и 
тем самым к стабилизации подсистемы оксидов 
[19, 20]. Таким образом, кластеры играют клю-
чевую роль в сохранении свойств ДУО-сталей в 
условиях радиационных нагрузок. Стоит отме-
тить, что исследования влияния облучения, как 
правило, проводятся при температурах в преде-
лах ~ 500°C (см. напр. [19, 20]), что ниже верхней 
границы предполагаемого температурного ин-
тервала эксплуатации ДУО-сталей в перспектив-
ных ядерных приложениях, где предполагается 
эксплуатация вплоть до температур 650–700°C 
[21–23]. С учетом важности влияния кластеров 
на стабильность всей системы ДУО-материала 
необходимо рассмотреть влияние повышенных 
температур на свойства материала.

Цель настоящей работы – применение атом-
но-зондовой томографии для анализа поведения 
ДУО-сталей при термическом старении. Для ис-
следования выбрана температура 650°С, отве-
чающая верхнему диапазону температур при-
менения ДУО-сталей в перспективных ядерных 
энергетических установках.

МАТЕРИАЛЫ И МЕТОДЫ
Исследуются материалы, разработанные в 

Технологическом институте Карлсруэ (KIT, Гер-
мания) – Eurofer ODS [24, 25], Киотском уни-
верситете (Япония) – KP-3 ODS [26, 27] и Ко-
рейском институте атомной энергии (KAERI, 
Республика Корея) – 10Cr ODS [28, 29]. Все  
ДУО-стали были получены путем механическо-
го легирования металлических порошков и по-
рошка Y2O3. Номинальные составы изучаемых 
ДУО-сталей представлены в табл. 1.

Сталь Eurofer ODS легирована V, 10Cr ODS 
содержит V и Ti, а сталь KP-3 ODS легирована 
Ti и Al. Содержание иттрия находится во всех 
сталях в диапазоне 0.13–0.17 ат.%, в то время как 

содержание кислорода представлено в достаточ-
но широком диапазоне от 0.17 до 0.37 ат.%. 

Исходные состояния данных материалов уже 
были ранее исследованы методами просвечиваю-
щей электронной микроскопии и атомно-зондовой 
томографии [30]. В настоящей работе представлены 
расширенные АЗТ-данные исходных состояний ис-
следуемых сталей, обеспечивающие улучшенную 
статистику детектированных событий. 

Для исследования термической стабильности 
образцы исследуемых ДУО-сталей были соста-
рены в высокотемпературной электровакуумной 
печи TVF-1200X. Время нагрева от комнатной 
температуры (21°C) до 650°C составляло 90 ми-
нут. Образцы находились при 650°C в течение 500 
и 1000 ч в вакууме 5·10–5 Торр. После остановки 
нагрева время остывания в вакууме 5·10–5 Торр 
составляло 6 ч.

Исследование наноразмерных преципитатов 
в материалах проводилось методом атомно-зон-
довой томографии (АЗТ) с пикосекундным ла-
зерным испарением микроскопах ПАЗЛ-3D 
и АТЛАЗ [31]. Низкая температура (40–50 К) в 
сочетании со сверхвысоким вакуумом и высо-
кой энергией лазера (0.1–1.2 мкДж) обеспечили 
снижение фоновых шумов. Лазерный источник 
подавал импульсы длительностью 10 пс на дли-
не волны 355 нм (ПАЗЛ-3D) и 532 нм (АТЛАЗ) 
с частотой 100 кГц [32]. Испарение составляло 
от 5 до 50 атомов на 1000 лазерных импульсов, 
а мощность лазера подбиралась таким образом, 
чтобы отношение ионов Fe++/Fe+ находилось в 
диапазоне от 100 до 1000 относительных единиц. 

Для подготовки образцов для атомной зон-
довой томографии из исходных заготовок вы-
резались штабики размером 0.3×0.3×10 мм3. 
Дальнейшее утонение образцов проводилось 
стандартными методами электрохимического 
полирования для формирования кончика об-
разца с радиусом закругления 15–50 нм. Каче-
ство полученных образцов контролировалось 
на просвечивающем электронном микроскопе 
JEOL 1200 EX. 

Анализ АЗТ-данных включал идентифика-
цию масс-спектра, реконструкцию и анализ 
трехмерного распределения химических элемен-
тов в образцах с использованием программного 
обеспечения KVANTM-3D [33]. Для каждого со-
стояния было получено не менее двух объемов с 
размерами 30×30×500 нм3. 

Таблица 1. Химический состав исследуемых ДУО сталей, ат.% (баланс по Fe)

Материал Mo Al Ni Mn Cr W Y O Ti V C N Ar Si
Eurofer ODS – – 0.02 0.39 9.81 0.34 0.13 0.34 – 0.22 0.40 0.21 – 0.06

10Cr ODS 0.57 – – 0.50 10.64 – 0.17 0.17 0.29 0.11 0.60 0.02 0.01 –
KP-3 ODS – 6.40 – – 13.82 0.55 0.16 0.37 0.18 – 0.21 – – –

https://yadi.sk/d/LIUVQgSBdVjO6w
https://yadi.sk/d/zbX8xBF61-PrvA
https://yadi.sk/d/exSOUAzyrA-gmg
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РЕЗУЛЬТАТЫ
AЗT-анализ исходного состояния ДУО-сталей 

выявил существенное число нанокластеров, име-
ющих размер в диапазоне 2–4 нм, обогащенных 
по Cr, Y, O, а также по Ti, V и Al, в зависимости от 
системы легирования [30]. В стали Eurofer ODS, 
не содержащей Ti, в кластерах присутствует зна-
чительное количество ванадия. В стали 10Cr ODS, 
содержащей V и Ti в сравнительно близких кон-
центрациях, кластеры преимущественно обо-
гащены по Ti. В стали KP-3 ODS, содержащей  
в ~30 раз больше Al по сравнению с Ti, кластеры 
тем не менее преимущественно обогащены по Ti.

После проведенного термического старения 
при 650°C в ДУО-сталях были обнаружены кла-
стеры, обогащенные по тем же элементам, что и 
кластеры в исходных состояниях. При этом при 
старении в течение 500 ч в Eurofer ODS сред-
ний размер кластеров увеличивается в 2 раза до 
4 ± 1 нм, а их объемная плотность вырастает в 1.5 
раза до 48 ×1022 м–3. При термическом старении в 
течение 1000 ч средний размер кластеров сохраня-
ется, а объемная плотность уменьшается в 1.3 раза 
до 37×1022 м–3. Атомные карты распределения хи-
мических элементов в исследованном объеме 
стали Eurofer ODS после термического старения 
представлены на рис. 1, 2, распределения класте-
ров по размеру (нормированные на объемную 
плотность) – на рис. 3. Также на рис. 3 для срав-
нения представлено распределение кластеров по 
размеру в исходном состоянии.

 Cr Mn V C N O W Y10 нм

Рис. 1. Атомные карты распределения химических элемен-
тов в исследованном объеме стали Eurofer ODS после ста-
рения при 650°C в течение 500 ч.

 Cr Mn V C N O W Y
10 нм

Рис. 2. Атомные карты распределения химических элемен-
тов в исследованном объеме стали Eurofer ODS после ста-
рения при 650°C в течение 1000 ч.
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Рис. 3. Распределения кластеров по размеру в стали Eurofer ODS в исходном состоянии, после 
термического старения при 650°C в течение 500 ч и 1000 ч.
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При термическом старении в течение 500 ч 
при 650°C в 10Cr ODS средний размер класте-
ров сохраняется (4 ± 1 нм), при этом их объем-
ная плотность вырастает в 1.3 раза до 21×1022 м–3. 
При термическом старении в течение 1000 ч 
средний размер кластеров сохраняется, а объ-
емная плотность уменьшается до значения, по-
лученного в исходном состоянии (в пределах 
разброса). Атомные карты распределения хими-
ческих элементов в стали 10Cr ODS после тер-
мического старения представлены на рис. 4–5, 
распределения кластеров по размеру – на рис. 6. 
Для сравнения также на рис. 6 представлено 

распределение кластеров по размеру в исходном 
состоянии.

При термическом старении в течение 500 ч 
при 650°C в KP-3 ODS средний размер класте-
ров сохраняется в пределах 4 ± 1 нм, при этом 
их объемная плотность вырастает в 1.3 раза до 
60 ×1022 м–3. При термическом старении в тече-
ние 1000 ч средний размер кластеров уменьша-
ется до 3 ± 1 нм, а объемная плотность незначи-
тельно увеличивается до 62 × 1022м–3 (в пределах 
разброса). Атомные карты распределения хими-
ческих элементов в стали KP-3 ODS после тер-
мического старения представлены на рис. 7, 8, 
распределения кластеров по размеру, в том чис-
ле в исходном состоянии, – на рис. 9.

В табл. 2 представлено сравнение количе-
ственных характеристик кластеров в исход-
ном состоянии и после термического старения 
при 650°C до 500 ч и 1000 ч. Подробное срав-
нение обогащения кластеров (разница между 

 Cr C O Y Mo V Ti

10 нм

Рис. 4. Атомные карты распределения химических элемен-
тов в исследованном объеме стали 10Cr ODS после старе-
ния при 650°C в течение 500 ч.

 Cr C O Y Mo V Ti
10 нм

Рис. 5. Атомные карты распределения химических элемен-
тов в исследованном объеме стали 10Cr ODS после старе-
ния при 650°C в течение 1000 ч.

Таблица 2. Характерные размеры и объемная плотность кластеров, обнаруженных с помощью АЗТ в ДУО-сталях 
после термического старения при 650°C в течение 500 и 1000 ч (приведены среднеквадратичные отклонения, в 
объемной плотности указана статистическая ошибка, определяемая числом обнаруженных кластеров)

Материал Тип кластеров
Средний размер кластеров, нм Объемная плотность кластеров, 

1022 м-3

Исходное 
состояние

650°C,  
500 ч

650°C, 
1000 ч

Исходное 
состояние

650°C, 
500 ч

650°C, 
1000 ч

Eurofer ODS Cr–Y–O-V 2 ± 1 4 ± 1 4 ± 1 32 ± 5 48 ± 3 37 ± 5
10Cr ODS Cr–Y–O–Ti 4 ± 1 4 ± 1 4 ± 1 16 ± 2 21 ± 2 15 ± 2
KP-3 ODS Cr–Y–O–Ti–Al 4± 1 4 ± 1 3 ± 1 45 ± 4 60 ± 3 62 ± 5
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концентрацией элемента в кластерах и его кон-
центрацией в матрице), а также состава матрицы 
до и после термического старения представле-
ны в табл. 3 и 4 соответственно. Отрицательное 
обогащение в табл. 3 отвечает меньшему содер-
жанию элемента в кластерах в сравнении с его 
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Рис. 6. Распределения кластеров по размеру в стали 10Cr ODS в исходном состоянии, после термиче-
ского старения при 650°C в течение 500 ч и 1000 ч.

 Cr C O Y Ti Al
10 нм

Рис. 7. Атомные карты распределения химических элемен-
тов в исследованном объеме стали KP-3 ODS после старе-
ния при 650°C в течение 500 ч.

 Cr C O Y Ti Al
10 нм

Рис. 8. Атомные карты распределения химических элемен-
тов в исследованном объеме стали KP-3 ODS после старе-
ния при 650°C в течение 1000 ч.
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содержанием в матрице. В Eurofer ODS, с увели-
чением времени термического старения, концен-
трация O и Y в матрице и обогащение в класте-
рах уменьшается. В 10Cr ODS концентрация O, Y 
и Ti в матрице с увеличением времени старения 
уменьшается, а в кластерах обогащение возрас-
тает только по O и Ti. В KP-3 ODS при старении 
концентрация O, Y и Ti в матрице возрастает, а в 
кластерах возрастает обогащение только по O и Y. 

ОБСУЖДЕНИЕ
Исследование методом АЗТ показало на-

личие существенных изменений в подсистеме 
кластеров в процессе термического старения. 
Изменение среднего размера и объемных плот-
ностей кластеров при увеличении времени тер-
мического старения от исходного состояния до 
1000 ч при 650°C представлены на рис. 10 и 11 
соответственно. В Eurofer ODS наблюдается 
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Рис. 9. Распределения кластеров по размеру в стали KP-3 ODS в исходном состоянии, после тер-
мического старения при 650°C в течение 500 ч и 1000 ч.

Таблица 3. Обогащение кластеров в исследуемых ДУО-сталях в исходном состоянии и после термического старе-
ния при 650°С в течение 500 и 1000 ч, ат.% (приведены среднеквадратичные отклонения)

Материал Eurofer ODS 10Cr ODS KP-3 ODS

Состояние 
Элемент Исходное 500 ч 1000 ч Исходное 500 ч 1000 ч Исходное 500 ч 1000 ч 

Fe –43 ± 6 –36 ± 3 –29 ± 10 –22 ±11 –36 ± 11 –24 ± 6 –20 ± 5 –24 ± 7 –31 ± 5
Cr 10 ± 1 6 ± 3 7 ± 4 4 ± 2 4 ± 2 3 ± 2 3 ± 2 3 ± 2 7 ± 3
Y 12 ± 3 4 ± 2 4 ± 1 3 ± 2 3 ± 1 3 ± 2 2 ± 1 4 ± 1 4 ± 2
O 11 ± 2 9 ± 1 7 ± 1 7 ± 4 16 ± 4 9 ± 3 8 ± 2 12 ± 1 12 ± 2
Ti – – – 6 ± 3 10 ± 4 8 ± 3 7 ± 2 9 ± 1 7 ± 3
V 8 ± 2 13 ± 5 7 ± 5 0.8 ± 0.4 1 ± 1 0.6 ± 0.4 – – –
Al – – – – – – 0.2 ± 0.2 0.3 ± 0.1 0.8 ± 0.8
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(рис. 10) заметный рост среднего размера кла-
стеров с 2 ± 1 до 4 ± 1 нм при старении в тече-
ние 500 ч, а затем сохранение размера до конца 

термического старения, в 10Cr ODS размер со-
храняется ~4 ± 1 нм во всем диапазоне времен 
старения, в то время как в KP-3 ODS средний 

Таблица 4. Средние концентрации химических элементов в матрице до и после термического старения при 650°С 
в течение 500 и 1000 ч, ат.% (приведены среднеквадратичные отклонения)

Материал Eurofer ODS 10Cr ODS KP-3 ODS
Состояние

Элемент
Исходное 500 ч 1000 ч Исходное 500 ч 1000 ч Исходное 500 ч 1000 ч 

Fe 89 ± 5 90 ± 1 91 ± 1 90 ± 1 91 ± 2 92 ± 1 82 ± 2 84 ± 1 86 ± 1
Cr 10 ± 1 9 ± 2 9 ± 1 8 ± 1 8 ± 1 7 ± 1 17 ± 2 15 ± 1 14 ± 1
Y 0.1 ± 0.1 0.02 ± 0.01 0.01 ± 0.01 0.2 ± 0.1 0.07 ± 0.07 0.04 ± 0.01 0.02 ± 0.02 0.07 ± 0.01 0.05 ± 0.04
O 0.3 ± 0.1 0.1 ± 0.1 0.04 ± 0.01 0.1 ± 0,1 0.2 ± 0.2 0.01 ± 0.01 0.01 ± 0.01 0.1 ± 0.1 0.2 ± 0.1
Ti – – – 0.07 ± 0.01 0.06 ± 0.06 0.02 ± 0.02 0.01 ± 0.01 0.07 ± 0.06 0.07 ± 0.01
V 0.2 ± 0.1 0.2 ± 0.1 0.1 ± 0.1 0.1 ± 0.1 – – – – –
С – 0.06 ± 0.01 0.04 ± 0.02 0.02 ± 0.01 0.05 ± 0.03 0.1 ± 0.1 0.05 ± 0.03 0.02 ± 0.01 0.1 ± 0.1
N – 0.07 ± 0.01 0.06 ± 0.01 0.01 ± 0.01 0.01 ± 0.01 0.01 ± 0.01 – – –

Mn 0.4 ± 0.1 0.3 ± 0.1 0.3 ± 0.1 0.7 ± 0.1 0.3 ± 0.3 0.4 ± 0.1 – – –
Mo – – – 0.4 ± 0.1 0.4 ± 0.2 0.2 ± 0.1 – – –
W 0.3 ± 0.1 0.03 ± 0.01 0.05 ± 0.02 – – – 0.3 ± 0.1 0.04 ± 0.01 0.1 ± 0.1
Al – – – – – – 0.06 ± 0.01 0.03 ± 0.01 0.06 ± 0.01
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Рис. 10. Зависимость среднего размера кластеров от степени термического старения.
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размер стабилен (~4 ± 1 нм) до 500 ч и немного 
уменьшается (до 3 ± 1) при увеличении време-
ни старения до 1000 ч. При этом стоит отметить, 
что во всех трех сталях при достижении 1000 ч 
старения (рис. 3, 6 и 9) больше не наблюдаются 
крупные кластеры (> 6–9 нм), которые все еще 
присутствовали после 500 ч. 

Основываясь на изменениях количествен-
ных и качественных характеристик кластеров и 
концентраций химических элементов в матрице 
исследованных ДУО-сталей (табл. 2 и 4), можно 
сделать выводы относительно природы измене-
ний в подсистеме кластеров. Для этого прове-
дем оценку объема материала, заключенного в 
кластеры, 4/3πR3 × N, где R и N – радиус и объ-
емная плотность кластеров соответственно. В 
результате старения при 650°C, 500 ч в Eurofer 
ODS объем материала в кластерах существен-
но возрастает в сравнении с исходным состоя-
нием, что также сопровождается характерным 
уменьшением количества Y и O в матрице, от-
вечающим стадии зарождения и роста класте-
ров из пересыщенного раствора матрицы. Ана-
логично в 10Cr ODS наблюдается рост общего 
объема кластеров при уменьшении содержания 
Y и Ti в матрице, что соответствует тенденции, 

характерной для стадии зарождения и роста кла-
стеров. В KP-3 ODS также наблюдается увеличе-
ние суммарного объема кластеров, но при этом 
происходит увеличение содержания Y, O и Ti в 
матрице, что возможно, когда, помимо зарожде-
ния и роста кластеров, происходит выделение 
указанных элементов за счет растворения ок-
сидных частиц. После старения в течение 1000 ч 
в Eurofer ODS, 10Cr ODS и KP-3 ODS наблюда-
ется снижение объема кластеров в сравнении с 
500 ч при дальнейшем уменьшении содержания 
соответствующих элементов в матрице. Умень-
шение объема кластеров при увеличении време-
ни старения от 500 до 1000 ч предположительно 
связано с трансформацией крупных кластеров в 
оксидные частицы.

Согласно результатам моделирования, вы-
полненного в работе [34], критический радиус 
зарождения для кластеров типа Y–O и Y–Ti–O 
находится в пределах 2 нм. После чего, соглас-
но [35], активную роль играет коалесценция 
(или Ostwald ripening в англоязычной литерату-
ре) [1, 8, 13, 36]. Данная закономерность пол-
ностью согласуется с результатами, полученны-
ми в настоящей работе для сталей Eurofer ODS 
и 10Cr ODS. В Eurofer ODS (кластеры Y–O) 
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Рис. 11. Зависимость объемной плотности кластеров от степени термического старения.
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после старения в течение 500  ч при 650°C на-
блюдается резкое увеличение среднего размера 
(до 4 ± 1 нм) и объемной плотности кластеров 
(в 1.5 раза), что соответствует стадии зарожде-
ния, а при старении в течение 1000 ч сохраняет-
ся средний размер при уменьшении объемной 
плотности (в 1.3 раза), что указывает на переход 
более крупных кластеров в оксидные частицы. 
В 10Cr ODS средний размер Y–Ti–O класте-
ров стабилен (4 ± 1 нм), в то время как объем-
ная плотность сначала увеличивается (в 1.3 раза 
при 500 ч), а затем уменьшается (в 1.3 раза при 
1000 ч), что также хорошо описывается моделью, 
включающей стадии зарождения, роста и после-
дующей коалесценции [34, 35]. Поведение стали 
KP-3 ODS отличается: при 500 ч старения сред-
нее значение размера сохраняется в пределах 
4 ± 1 нм при увеличении объемной плотности 
(в 1.3 раза), но затем при 1000 ч уменьшается до 
(3 ± 1 нм) с сохранением объемной плотности. 
Данное изменение предположительно связано с 
преобразованием более крупных кластеров в ок-
сиды. Проверка этого утверждения требует до-
полнительных исследования методом ПЭМ.

ЗАКЛЮЧЕНИЕ
Проведено исследование методами атом-

но-зондовой томографии перестройки нано-
структуры дисперсно-упрочненных оксидами 
сталей Eurofer ODS, 10Cr ODS и KР-3 ODS с 
различными системами легирования в резуль-
тате термического старения при 650°С в течение 
500 и 1000 ч.

После старения ДУО-сталей в течение 500 ч об-
наружены: кластеры Cr–Y–O с размерами ~ 4 нм 
и объемной плотностью ~ 48×1022 м–3 в Eurofer 
ODS, кластеры Cr–Y–O–Ti со средним размером 
~4 нм и объемной плотностью 21×1022 м–3 в ста-
ли 10Сr ODS и кластеры Cr–Y–O–Ti размерами 
~4 нм и объемной плотностью 60×1022 м–3 в стали 
KP-3 ODS. После старения в течение 1000 ч тип 
кластеров не изменился, а их характеристики со-
ставили: средний размер ~ 4 нм и объемная плот-
ность ~ 37×1022 м–3 в Eurofer ODS, размер ~ 4 нм и 
объемная плотность 15×1022 м–3 в стали 10Сr ODS, 
и размер ~ 3 нм и объемная плотность 62×1022 м–3 

в стали KP-3 ODS.
Сравнение полученных данных после тер-

мического старения с данными для исходного 
состояния демонстрирует во всех сталях рост 
объемной плотности кластеров (при сохране-
нии или росте их среднего размера) при старе-
нии в течение 500 ч, соответствующий стадии 
зарождения кластеров. В то время как после ста-
рения в течение 1000 ч обнаружено уменьшение 
объемной плотности, что соответствует стадии 

коалесценции. Данные закономерности также 
подтверждаются анализом изменения концен-
трации химических элементов в матрице. 

Изменение объемной плотности, средних 
размеров и химического состава кластеров, а 
также матрицы указывает на существенное вза-
имодействие кластеров с другой фазой в услови-
ях термического старения при 650°С до 1000 ч. В 
роли этой фазы могут выступать оксидные ча-
стицы.

Работа выполнена при финансовой поддерж-
ке Российской Федерации в лице Министерства 
науки и высшего образования РФ (Соглашение 
№ 075–15–2021–1352). Томографический атом-
но-зондовый анализ выполнен на оборудовании 
Центра коллективного пользования КАМИКС 
(http://kamiks.itep.ru/) НИЦ “Курчатовский ин-
ститут”.
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ATOMIC PROBE TOMOGRAPHY STUDY OF THE EFFECT  
OF THERMAL AGING ON THE NANOSTRUCTURE OF OXIDE  

DISPERSION-STRENGTHENED STEELS
S. V. Rogozhkin1, 2, *,  A. V. Klauz1, 2,  A. A. Khalyavina1, 2,  A. A. Bogachev1, 2,  O. A. Raznitsyn1, 2,  

A. A. Nikitin1, 2,  A. A. Lukyanchuk1, 2,  A. S. Shutov1, 2,  and  A. G. Zaluzhnyi1, 2
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In the present work, the effect of thermal aging on the nanostructure of three oxide dispersion-strength-
ened steels with different alloying systems: Eurofer ODS, 10Cr ODS and KP-3 ODS was investigated by 
atom probe tomography. The investigated steels were aged at 650°C for 500 and 1000 h. Nanoscale clusters 
enriched in Y, O and Cr, as well as in V, Ti and Al depending on the alloying system of the steel were 
found in all states. Investigation of the changes in the nanostructure of steels after thermal aging for 500 h 
showed a significant increase in the number density of clusters in all steels, while after 1000 h aging their 
number density decreased in Eurofer ODS and 10Cr ODS, or remained at the same level in KP-3 ODS. 
At 500 h, the retention (10Cr ODS, KP-3 ODS) or increase (Eurofer ODS) of the average cluster size was 
also observed, while at 1000 h the average size was stable in Eurofer ODS and 10Cr ODS, or experienced a 
slight decrease in KP-3 ODS. Analysis of the nanostructure change showed first an increase in the number 
density of clusters (while maintaining or increasing the average size) in all steels during aging up to 500 h, 
corresponding to the nucleation stage of new clusters. After aging for 1000 h, a decrease in number density 
was found, corresponding to the maturation stage. These tendencies are also confirmed by analyzing the 
changes in the concentration of chemical elements in the matrix.

Keywords: clusters, atom probe tomography, oxide dispersion-strengthened steel, thermal aging
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