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В приближении среднего поля изучены фазовые переходы в открытой системе, состоящей из ан-
самбля взаимодействующих квантовых подсистем с дискретным спектром. В рассматриваемой 
модели изменение внутренней симметрии термодинамической системы при фазовом переходе 
второго рода обусловлено изменением симметрии распределения зарядовой/спиновой плотно-
сти внутри каждой квантовой подсистемы. Последнее может быть вызвано как расщеплением 
одного из нижних вырожденных энергетических уровней, так и закрытием щели между уровня-
ми и возникновением антикроссинга. Влияние внешних параметров (давление, поле, состав и 
т. д.) приводит к прямому изменению внутренних управляющих параметров: расстояния между 
уровнями и/или силы взаимодействия между соседними квантовыми подсистемами. В простей-
шем случае двухуровневых квантовых подсистем в аналитическом виде получены выражения для 
свободной энергии как функции внутренних управляющих параметров. Определено поведение 
теплоемкости и восприимчивости для различных областей низкотемпературной фазовой диа-
граммы, включая область квантовых флуктуаций.
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1. ВВЕДЕНИЕ
Теории фазовых переходов, вызванных на-

рушением симметрии, оказали влияние на все 
области физики. Согласно Ландау [1, 2], непре-
рывный фазовый переход между двумя фазами 
возможен, если группа симметрии одной фазы 
является подгруппой другой фазы. Теория Лан-
дау основана на предположении, что свобод-
ная энергия F системы является аналитической 
функцией параметра порядка m и может быть 
разложена в степенной ряд: 
	 F Am Bm Cm= + + +2 4 6 ... .	 (1)

Здесь A, B, C и т. д. – коэффициенты, которые 
могут зависеть от различных степеней свободы. 
Физическое значение m соответствует миниму-
му свободной энергии F.

Теория Ландау удивительно универсальна. 
Она успешно применяется для вызванных из-
менением температуры фазовых переходов как 
второго, так и первого рода [3, 4]. Условия су-
ществования фазовых переходов достаточно об-
щие. Для переходов второго рода коэффициент 

A должен изменять знак в точке перехода, если 
B > 0. Если выполняются условия B < 0 и C > 0, то 
переход от m ≠ 0 к m = 0 происходит скачкообраз-
но. Выбрав подходящий набор коэффициентов 
A, B, C, можно воспроизвести зависимость F(m) 
для любой точки на линии фазового перехода 
фазовой диаграммы. Однако для определения 
самой фазовой диаграммы необходимо ввести 
зависимость коэффициентов разложения Лан-
дау от параметров, определяющих физическое 
состояние системы. Результаты расчетов могут 
принципиально различаться в зависимости от 
того, какой вид взаимодействий учитывается в 
расчете.

В последние десятилетия большое внимание 
уделяется изучению магнитных фазовых перехо-
дов, которые происходят при нулевой темпера-
туре и управляются нетепловыми параметрами. 
Одной из интенсивно изучаемых областей явля-
ется область квантовой неустойчивости [5–7]. 
Для квантового фазового перехода параметр по-
рядка m может уменьшаться вплоть до нуля при 
изменении внешнего управляющего параметра, 

mailto:mushnikov@imp.uran.ru


ФИЗИКА МЕТАЛЛОВ И МЕТАЛЛОВЕДЕНИЕ      том 126       № 2       2025

152	 РОЗЕНФЕЛЬД, МУШНИКОВ	

при этом в квантовой критической точке при 
m  =  0 изменяется основное состояние. При ко-
нечных температурах вблизи квантовой крити-
ческой точки основное состояние системы не 
может быть определено однозначно, и возникает 
область квантовых флуктуаций, которые сильно 
влияют на свойства вещества [8, 9]. При описании 
квантовых фазовых переходов многие теорети-
ческие исследования начинаются с применения 
теории Ландау [4, 9–11]. Примером фазового пе-
рехода при нулевой температуре в системе лока-
лизованных электронов является спин-кроссовер 
из высокоспинового в низкоспиновое состояние 
в диэлектриках Мотта–Хаббарда [12–14]. Мета-
магнетизм коллективизированных электронов, 
т. е. переход из парамагнитного в ферромагнит-
ное состояние под действием магнитного поля 
[15, 16], представляет интерес не только с фунда-
ментальной, но и с практической точки зрения 
из-за больших магнитотепловых и магнитообъ-
емных эффектов [17, 18]. Метамагнитный переход 
в зонной системе электронов может быть успеш-
но описан с помощью теории Ландау [19–21].

Основная цель настоящего исследования, ис-
ходя из теории Ландау, – получить наиболее об-
щее описание фазовых переходов, происходящих 
при низкой температуре и управляемых измене-
нием давления, магнитного поля, состава спла-
ва или любых других физических параметров, за 
исключением температуры. Мы рассматриваем 
открытую квантовую систему [22], содержащую 
квантовые подсистемы с дискретным спектром 
(например, неполную электронную оболочку 
переходного элемента). Взаимодействие между 
квантовыми подсистемами рассматривается в 
приближении среднего поля. Для области низ-
ких температур мы ограничиваемся лишь мини-
мальным числом низколежащих уровней в спек-
тре квантовых подсистем. При таком подходе 
параметрами, вызывающими фазовый переход, 
являются либо расстояние между уровнями, ли-
бо сила взаимодействия между квантовыми под-
системами. Рассматривая только двухуровневые 
квантовые подсистемы, мы изучили поведение 
теплоемкости и магнитной восприимчивости 
вблизи фазового перехода. Выражения для сво-
бодной энергии, рассмотренные в аналитиче-
ской форме, оказались удобными для описания 
как температурно-индуцированных, так и про-
исходящих при нулевой температуре фазовых 
переходов второго рода.

2. МОДЕЛЬ
Единственное базовое понятие теории Ландау, 

относящееся к внутренней структуре системы, 
состоит в том, что при фазовом переходе второго 
рода изменяется ее внутренняя симметрия. Мы 

конкретизировали это понятие, рассматривая 
систему как ансамбль взаимодействующих кван-
товых подсистем (КВП) с дискретным спектром. 
По-видимому, следует рассмотреть два новых 
элемента: внутренний квантовый параметр, ха-
рактеризующий спектр системы, и новый па-
раметр порядка, обеспечивающий соответствие 
структуры КВП состоянию макроскопической 
физической системы. Тогда воздействие внеш-
них управляющих параметров сводится либо к 
прямому изменению расстояний между уровня-
ми в спектре, либо к изменению величины вза-
имодействия между квантовыми подсистемами.

Предположим, что спектр квантовых подси-
стем известен и что при изменении внутреннего 
управляющего параметра D симметрия квантовых 
объектов изменяется в точке D = Dc. Изменение 
симметрии волновых функций может происхо-
дить в результате гибридизации соседних уровней 
или расщепления вырожденных уровней.

Предположение о дискретном спектре КВП 
подразумевает, что их характерный размер мал, 
так что каждая из квантовых подсистем может 
взаимодействовать лишь с небольшим числом n 
ближайших соседей. Тем не менее при описании 
взаимодействия между КВП мы будем исполь-
зовать приближение среднего поля, что карди-
нально упрощает решение. Любые изменения 
в спектре КВП, приводящие к изменению сим-
метрии распределения плотности заряда/спино-
вой плотности внутри каждой из них, являются 
результатом и одновременно приводят к некото-
рым изменениям эффективного среднего поля, 
действующего на все КВП в системе. Это поле 
есть просто сумма полей, создаваемых каждой 
из КВП, и именно оно может быть использовано 
в качестве параметра порядка.

Предложенный подход приводит к двум 
принципиально новым возможностям по срав-
нению с классической теорией Ландау. Во-пер-
вых, теперь мы можем рассматривать квантовые 
эффекты в рамках феноменологической моде-
ли, а во-вторых, свободная энергия оказывается 
простой аналитической функцией температуры 
и внутренних управляющих параметров, кото-
рую можно использовать вместо выражения (1) 
для свободной энергии.

Одним из принципиальных моментов в этом 
приближении является появление в гамильтони-
ане дополнительного члена, описывающего не-
что вроде “собственной энергии” молекулярного 
поля. Он появляется из-за того, что невозможно 
просто заменить произведение операторов, свя-
занных с различными квантовыми подсистема-
ми, его средним значением, например,

	 O O O O O O O Oi j i j i j i j
� � � �⋅ ⇒ + - , 	 (2)
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поскольку необходимо избежать удвоения соот-
ветствующего вклада в энергию их взаимодей-
ствия: 

O O O Oi j i j
� �⋅ ⇒ 2 .

Поскольку для низкотемпературных эффек-
тов вклад высших состояний пренебрежимо мал 
из-за их малой заселенности, в теории достаточ-
но рассматривать только самые нижние уровни 
в спектре КВП. Ниже мы рассмотрим простей-
шую конфигурацию с двумя нижними уровнями 
в спектре квантовых подсистем.

3. ДВУХУРОВНЕВЫЕ КВАНТОВЫЕ 
ПОДСИСТЕМЫ, ВЫРОЖДЕННЫЕ УРОВНИ

В теории Ландау фазовый переход второго 
рода – это переход между двумя состояниями 
системы, одно из которых является высокосим-
метричным, а другое – низкосимметричным. В 
нашей модели переход такого типа возникает в 
ансамбле двухуровневых КВП, энергии состо-
яний которых совпадают в высокосимметрич-
ной фазе, хотя их волновые функции обладают 
разной симметрией. Примером такой системы 
является ферромагнетик со спином S = 1/2. В 
каждом из состояний с S Mz ≡ = ± 1

2  два на-
правления оси z� неэквивалентны. Однако в вы-
сокосимметричной (парамагнитной) фазе ве-
роятности их заселения равны, а направления 
+z и –z эквивалентны. Если снять вырождение, 
вероятности заселения расщепленных уровней 
становятся различными, симметрия одной из 
волновых функций внутри КВП преобладает, а 
вне ее возникает поле, стабилизирующее расще-
пление уровней в соседней КВП. 

Для описания системы, содержащей такие 
двухуровневые КВП, удобно ввести операторы 
спина с S = 1/2 и использовать гамильтониан 
Гейзенберга:

	 H i j

j

n

i

= − ( )
=

∑∑1
2

1

Λ S S� ��
. 	 (3)

Здесь L – параметр спинового взаимодей-
ствия, суммирование по j проводится для n КВП, 
являющихся ближайшими соседями, взаимо-
действующими с i-й КВП. Подчеркнем, что в (3) 
и далее рассматривается эффективный спин, так 
что системы, описываемые соответствующими 
эффективными спиновыми гамильтонианами, 
могут иметь любое происхождение.

Заменяя скалярное произведение спинов на 
произведение их z-компонент и используя урав-
нение (2) для устранения двойного учета вкла-
да в энергию в приближении среднего поля, 

получаем свободную энергию системы на одну 
КВП: 

	
F k T

T
k

S
n
k

z

= - 













 +

= =

B
B

B

ln cosh ,

, .

2
2

2
4

2Q Q

Q L

m m

m �
 	 (4)

Разложение свободной энергии в ряд по пара-
метру порядка µ дает выражение:

	 F
T

T T
m m m( ) =

-( )
+ +

Q Q Q
2 12

2
4

3
4 ... , 	 (5)

и соответствующая критическая температура 
перехода определяется из условия TC =  Q. Точ-
ное уравнение, определяющее минимум F, име-
ет стандартный вид:

	 m mt t t T( ) = ( ) =tanh , Q  	 (6)

и дает то же значение критической температуры, 
что и полученное из разложения (5), но несколь-
ко иную температурную зависимость параметра 
порядка.

Введение в (3) энергии взаимодействия с 
внешним полем сразу приводит к стандартной 
восприимчивости Кюри–Вейсса. Теплоемкость 
любой системы с гамильтонианом (3) в прибли-
жении молекулярного поля также имеет стан-
дартный вид:

	

C T k
d

dT T

k t
d
d

t

( ) = - 





+








 =

= - ( )

= ( )B

B

Q Qm m m

m

m m
tanh

tanh

1
2

2

tt
t

t T
m( )

= Q

.

 (7)

Теплоемкость резко падает при T → 0, зави-
сит от t почти линейно в диапазоне 0.3 < t < 1 и 
исчезает при t > 1 [23].

Очевидно, что аналогичная свободная энер-
гия (4) будет характерна для упругой матрицы, 
в которую вставлены центры Яна–Теллера. В 
этом случае параметр Q будет контролировать 
жесткость матрицы. В более широком смысле 
это утверждение справедливо для систем лю-
бой природы, см. [24]. В выражении (4) член 
1

2
2kBQm  определяет “собственную энергию” 

молекулярного поля. Видно, что с математиче-
ской точки зрения описание обычного фазового 
перехода второго рода в нашей модели очень по-
хоже на описание коллективного эффекта Яна–
Теллера. В обоих случаях переход происходит 
при понижении температуры, когда после рас-
щепления уровней разность вероятностей их за-
селения становится столь существенной, что вы-
игрыш в энергии ансамбля “активных центров” 
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или квантовых подсистем (логарифмический 
член в (4)) превышает потерю упругой энергии 
или энергии молекулярного поля. Ситуация, 
когда при T → 0 такой переход не может прои-
зойти спонтанно, может реализоваться толь-
ко для ансамбля невзаимодействующих КВП с 
L = 0 в (3). Таким образом, в рамках нашей мо-
дели существование фазового перехода второго 
рода при понижении температуры является осо-
бенностью систем, имеющих в высокосимме-
тричной фазе настолько высокую симметрию, 
что два нижних уровня в спектре КВП становят-
ся вырожденными. 

4. ДВУХУРОВНЕВЫЕ  
КВАНТОВЫЕ ПОДСИСТЕМЫ, 
НЕВЫРОЖДЕННЫЕ УРОВНИ

Если симметрия системы в высокосимме-
тричной фазе не столь высока, то энергии e1  и 
e2  состояний 1  и 2 , волновые функции ко-
торых обладают разной симметрией, будут раз-
ными. Внешнее воздействие соответствующей 
природы может уменьшить расщепление уров-
ней D = -e e2 1  или даже изменить его знак. В 
последнем случае изменяется основное состоя-
ние КВП и произойдет фазовый переход.

Дополнительные особенности появляются, 
если соседние КВП, находящиеся в разных со-
стояниях, взаимодействуют друг с другом. При-
мером такой системы может служить ансамбль 
обменно-связанных магнитных ионов с целым 
спином S ≥ 1 и анизотропией типа “легкая пло-
скость”. Для изменения расстояния D между 
нижними уровнями Sz = M и M + 1 достаточно 
изменить напряженность внешнего магнитно-
го поля, направленного вдоль оси трудного на-
магничивания z [25]. Принципиальное отличие 
от рассмотренного выше случая состоит в том, 
что при расщеплении вырожденного уровня од-
но из его собственных состояний становится 
основным. При сокращении расстояния между 
взаимодействующими уровнями 1  и 2  должен 
возникать антикроссинг, приводящий к гибри-
дизации этих уровней, так что волновые функ-
ции новых основного g  и возбужденного e  
состояний, являясь линейными комбинациями 
функций 1  и 2 , обладают более низкой сим-
метрией, чем каждая из них.

4.1. Гамильтониан и свободная энергия
Предполагая для простоты, что между сосед-

ними КВП, находящимися в одинаковых состо-
яниях, нет взаимодействия, запишем гамильто-
ниан в виде:

− +H i i i i O O O Oi     j i       j

j

n

i

= + 















=
∑∑ ε ε1 2

1

1 1 2 2
1
2

Λ � � � �  
. ,,

††�

	 O i ii
� = 1 2 .  	 (8)

Легко видеть, что гамильтониан (8) аналоги-
чен гамильтониану модели Изинга в попереч-
ном магнитном поле [26]. Предположим также, 
что при гибридизации уровней, которая в при-
ближении молекулярного поля сопровождается 
спонтанным нарушением симметрии, параметр 
порядка m будет определяться как

	  m O O O Oi i i i= + + =� � � �† †
, .0 	 (9)

Тогда гамильтониан приобретает вид:

	
− +Λ Λ

i i= +ε ε1 2 2 2H i i

nm h O O nm
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†
	 (10)

где h — внешнее поле соответствующей приро-
ды, которое способствует гибридизации. Теперь 
гамильтониан можно легко диагонализировать:

	

g e
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K
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K nm h
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e e
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D D

D L(( ) = -2
2 1, .D e e

 	 (11)

Если при T = 0 и h = 0 будет происходить ади-
абатическое изменение D, то в любой момент 
времени система будет находиться в основном 
состоянии и, согласно (9),

	 m g O O g
nm
K

= + = = ≤� �† 2 1ab L
. 	 (12)

Следовательно, K n≡ L , если m ≠ 0. Макси-
мальное значение m = 1 достигается при D = 0, и 
это как раз соответствует критической точке фа-
зового перехода. Однако это ни в коем случае не 
означает, что слева от точки фазового перехода 
основное состояние будет 1 , а справа 2 . Одно 
из этих состояний становится основным толь-
ко при D L> n, когда самосогласованное урав-
нение (12) имеет только тривиальное решение 
m = 0. В противном случае имеем:

	 m n
2 2

1= - ( )D
L ,	 (13)

и g  и e  являются суперпозициями состояний 
1  и 2 . Согласно терминологии, введенной 
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Ландау [6, 27], это область квантовых флуктуа-
ций. При определении, остается ли в этой обла-
сти система в состоянии 1  или 2 , оба реше-
ния были получены с разными, но конечными 
вероятностями, поскольку функция основного 
состояния является суперпозицией двух состо-
яний, а не из-за тепловых флуктуаций системы.

При конечных температурах выражение для 
свободной энергии принимает следующий вид:
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	 (14)

Последующие члены этого разложения не 
имеют особенностей. Экстремумы F являются 
корнями уравнения 

	 K
n

m m
h
n

K
nt

t T
L L L

= +











=2
tanh , q . 	 (15)

Это означает, что при отсутствии поля выра-
жение для свободной энергии F (14) всегда имеет 
тривиальный экстремум в точке m = 0, который 
достигается только в “чистых” состояниях 1  и 
2 , и еще один нетривиальный минимум возни-

кает при T T< =C q:

	 K m k T m T( ) = ( ) ⇒ = ( ) - ( )2 2
2 2 2

Bqm q m q
ϑ

q , (16)

для сравнения см. выражения (6) и (13).
Таким образом, в окрестности критической 

точки ( ϑ  = 0, T = 0) на фазовой диаграмме си-
стемы (рис. 1) существует область фазы с кван-
товыми флуктуациями, на границе которой 
возникает фазовый переход второго рода, сопро-
вождающийся изменением симметрии системы 
и обращением в нуль параметра порядка. Если 
в эксперименте температура изменяется при по-
стоянном значении D = kBϑ, то в диапазоне тем-
ператур 0 < < ∞T  возникает только один пере-
ход. Однако если D изменяется при T = const, то 
возникают два последовательных фазовых пере-
хода. Из (16) и из разложения Ландау для A (14) 

следует, что граница фазы с квантовыми флукту-
ациями определяется уравнением
	 ϑ qm q= ( )2 T  	 (17)
и в некотором смысле может быть названа лини-
ей квантового фазового перехода.

4.2. Почему в фазе с квантовыми флуктуациями 
щель между основным и возбужденным 

состояниями не зависит от величины Δ?
Из выражения (15) видно, что при h = 0 рас-

щепление уровней (т. е. величина K n/ L ) в фазе 
с квантовыми флуктуациями зависит от темпе-
ратуры, а не от Δ. Причину возникновения такой 
особенности в поведении системы легко понять, 
если проанализировать зависимость минимума 
F от Δ при очень низких температурах, см. [28]. 
В этом случае минимизация свободной энергии, 
эквивалентная самосогласованной процедуре 
(12), сводится к минимизации функции:

	 f x x x( ) = - + ( )q ϑ q2 2 2
4 . 	 (18)

В случае ϑ q> 2  минимум функции f дости-
гается при x = 0. Для случая ϑ q< 2  значение 
квадратного корня оказывается постоянным в 
точке минимума xmin: ϑ q q2 2

4 2+ ( ) ≡xmin . В ре-
зультате для расщепления уровней D в окрестно-
сти фазового перехода в диапазоне - ≤ ≤L D Ln n 
степень гибридизации уровней постоянно “под-
страивается” таким образом, чтобы щель между 
основным и возбужденным состоянием остава-
лась неизменной, K n= L .

Такая же математическая особенность су-
ществует и в случае минимизации свобод-
ной энергии при конечной температуре, когда 
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Рис. 1. Фазовая диаграмма в координатах (ϑ, T). Стрелка-
ми показаны температуры, для которых на рис. 2 приведе-
ны кривые теплоемкости.
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вместо функции (18) минимизируется функция 
q ϑ qx f x2 2 2

4- + ( )





� . В результате, корнем (15) 

теперь является m, а K снова не зависит от Δ. При 
этом зависимость (16) от t получается несколько 
более сложной.

4.3. Теплоемкость
Поведение теплоемкости в области фазы с 

квантовыми флуктуациями и вне этой области 
совершенно различно. Поскольку щель между 
основным и возбужденным состояниями оста-
ется неизменной при фиксированной темпера-
туре, теплоемкость C не зависит от ϑ  в области 
фазы с квантовыми флуктуациями (рис. 2). Кро-
ме того, в верхней части области фазы с кван-
товыми флуктуациями на фазовой диаграмме, 
рис. 1, теплоемкость C практически линейно 
зависит от температуры. Дело в том, что темпе-
ратурная зависимость внутренней энергии UQF  
системы с гамильтонианом (10) и температурная 
зависимость обменной энергии ферромагнетика 
со спином ½ подобны друг другу:

	

U T

k
K k T

k

QF

K k T

( ) -
+

=

= - + ( ) =

= -

= ( )

e e

q
qm q

qm

qm q

1 2

2
2

2

2

2
1

4
1
2

1
2

B
B

B

B

.

	 (19)

Следовательно, теплоемкость системы также 
должна совпадать с (7).

За пределами области фазы с квантовыми 
флуктуациями система представляет собой ан-
самбль обычных двухуровневых квантовых под-
систем, обладающих теплоемкостью Шоттки. 

Исходя из этого, для теплоемкости справедливо 
соотношение:
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Таким образом, в приближении среднего по-
ля вдоль всей границы области фазы с квантовы-
ми флуктуациями (рис. 1) должен наблюдаться 
скачок теплоемкости, величина которого увели-
чивается с ростом температуры [29]. Поскольку 
lim
x

x x
→

( ) ′ ( )  =
1

3
2m m , в фазе с квантовыми флук-

туациями теплоемкость, приходящаяся на одну 
квантовую подсистему, стремится к значению 
1.5 kB при T → q. Как видно из рис. 2, этот пре-
дел достигается только в узкой области значений 
ϑ q� .

С понижением температуры ширина обла-
сти фазы с квантовыми флуктуациями быстро 
растет, так что интервал значений, в которых С 
постоянна, также увеличивается, рис. 2. Более 
того, для ϑ q/ = 0  теплоемкость практически 
линейно зависит от температуры в диапазоне 
температур от 0.4 θ до 1 θ (рис. 3). При повыше-
нии температуры интервал линейной зависимо-
сти С(Т) постепенно сужается.

4.4. Восприимчивость
В малом внешнем поле h зависимость (15) 

внутри области фазы с квантовыми флуктуаци-
ями и за ее пределами будет различной. Внутри 
области при D L< ≡( )n t Tm q/  имеем:
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Рис. 2. Зависимость теплоемкости С (20) в системе двуху-
ровневых квантовых подсистем (10) от расщепления уров-
ней ∆ = kBϑ для различных температур.
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Рис. 3. Температурная зависимость теплоемкости при раз-
личных значениях ϑ/θ.
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С ростом температуры в этой области вос-
приимчивость монотонно возрастает и расхо-
дится на ее границе. За пределами области фазы 
с квантовыми флуктуациями при минимизации 
свободной энергии (14) следует учитывать из-
менение тривиального корня m = 0 при измене-
нии знака магнитного поля h, и в результате при 
D L> ≡( )n t Tm q/  получаем

	 c =
- = ( )
2x

nx x nt
D L D

Ltanh

.	 (22)

Это выражение также расходится на внешней 
границе области фазы с квантовыми флуктуаци-
ями, и при T  →  ∞ восприимчивость монотон-
но убывает пропорционально обратной степени 
температуры. При T → 0 восприимчивость оста-
ется конечной всюду, кроме точек D L= ± n :
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На рис. 4 показан контурный график вос-
приимчивости как функции T и ϑ . Для ясности 

максимальное значение c ограничено величи-
ной 20. Чувствительность m к слабым измене-
ниям D отлична от нуля только в области суще-
ствования фазы с квантовыми флуктуациями. 
Дифференцируя (16), получаем

	 ∂
∂

= -
( ) - ( )

m

n TD
D

L 2 2m q
. 	 (24)

Восприимчивость также расходится на гра-
нице области фазы с квантовыми флуктуациями 
и отрицательна, поскольку согласно (11) и (16) 
величина K не должна изменяться при измене-
нии величины расщепления уровней D.

5. ОБСУЖДЕНИЕ И ЗАКЛЮЧЕНИЕ
В термодинамической системе, представляю-

щей собой ансамбль взаимодействующих кван-
товых подсистем с дискретным спектром, мо-
гут возникать некоторые специфические типы 
фазовых переходов при нулевой температуре. 
Феноменологическое описание этих переходов 
можно вывести из теории Ландау, дополнив ее 
предположением о взаимодействии между кван-
товыми подсистемами и о структуре их энерге-
тического спектра. В такой модели, рассматри-
вая только низшие уровни в спектре, вместо 
разложения Ландау для свободной энергии мож-
но получить простые аналитические выражения, 
удобные для описания как термодинамических 
(проходящих при изменении температуры), так 
и нетермодинамических фазовых переходов.

Подобные задачи решаются в недавних ис-
следованиях других авторов. Так, в работе [30] 
проведен анализ применимости приближения 
среднего поля для двухуровневых открытых дис-
сипативных систем. В работе [26] с использова-
нием стандартных методов статистической ме-
ханики развита теория среднего поля для модели 
Изинга со спинами ½ в поперечном магнитном 
поле с отрицательным тепловым расширением 
решетки.

Простейший ансамбль двухуровневых кван-
товых подсистем, в котором уровни в высоко-
симметричной фазе вырождены, обладает сво-
бодной энергией в виде уравнения (4). В таком 
ансамбле при температурах ниже критической 
T < TC возникает спонтанное расщепление уров-
ней, аналогичное коллективному эффекту Яна–
Теллера. Поскольку волновые функции расще-
пленных уровней имеют разную симметрию и 
вероятность их заселения также различается, 
симметрия распределения зарядовой/спиновой 
плотности внутри каждой квантовой подсисте-
мы понижается. В результате возникает поле, 
действующее на соседние квантовые подсистемы 
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Рис. 4. Контурный график восприимчивости в координатах 
(ϑ, T).
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и уменьшающее их энергию, что стабилизиру-
ет возникающие изменения в их спектре. При 
этом функция распределения квантовых под-
систем по уровням контролируется обычными 
тепловыми флуктуациями. Волновая функция 
основного состояния в низкосимметричной фа-
зе является одной из функций изначально вы-
рожденного уровня, так что квантовые флукту-
ации отсутствуют.

Другой случай – ансамбль двухуровневых под-
систем, где уровни энергии ε1 и ε2 в высокосимме-
тричной фазе различны, так что e e2 1 0- = ≠D ,  
и симметрия распределения плотности спина/
заряда внутри квантовой подсистемы не может 
быть выше симметрии для каждого состояния 
ψ ψ1 2& . Теперь свободная энергия системы 

определяется уравнением (14), а фазовый пере-
ход второго рода происходит только тогда, когда 
расщепление уровней |D| достаточно мало. При 
сближении уровней происходит их гибридиза-
ция, степень которой характеризуется параме-
тром порядка m (12), и возникает антикроссинг. 
В результате волновая функция основного со-
стояния в низкосимметричной фазе оказывает-
ся суперпозицией волновых функций двух “за-
травочных” состояний g = +a ψ b ψ1 2  (11). И 
при любых температурах, включая T = 0, внутри 
области существования на фазовой диаграмме 
(рис. 2) фазы с квантовыми флуктуациями неко-
торые квантовые подсистемы находятся в состо-
янии 1 , а другие – в состоянии 2 . Поскольку 
одно из этих состояний является основным при 
положительных значениях D, а другое – при от-
рицательных значениях D, то можно видеть, что 
в системе, находящейся в низкосимметричной 
фазе, существуют квантовые флуктуации. При 
изменении D или T параметр порядка m непре-
рывно устремляется к нулю на границе области 
квантовых флуктуаций, что соответствует фазо-
вому переходу второго рода.

В любой точке внутри области фазы с кван-
товыми флуктуациями величина m самосогла-
сованно подстраивается так, что ширина щели 
K (11) между основным и возбужденным состо-
яниями не изменяется с изменением D и зави-
сит только от температуры. В результате в фазе 
с квантовыми флуктуациями появляется замет-
ная (до 1.5 kB на одну квантовую подсистему) 
теплоемкость C (20), величина которой практи-
чески линейно зависит от температуры и не за-
висит от D. Более того, вблизи границы области 
существования фазы с квантовыми флуктуаци-
ями на зависимости С(D) возникают характер-
ные резкие особенности, показанные на рис. 2. 
Внешнее поле h стремится увеличить степень 
гибридизации уровней (21). Восприимчивость 

χ, характеризующая отклик системы на внешнее 
поле h, также расходится на границе области с 
квантовыми флуктуациями.

Все результаты получены всего лишь при двух 
предположениях: (i) система состоит из кван-
товых подсистем с дискретным спектром и (ii) 
взаимодействие между квантовыми подсисте-
мами может быть описано в приближении мо-
лекулярного поля. Эти предположения вполне 
естественны для твердых тел, для которых кол-
лективизированные электроны слабо влияют на 
их электронный спектр. Поэтому разработан-
ная теория может быть применена к широкому 
семейству оксидов переходных металлов, пник-
тидов, халькогенидов, включая низкоразмерные 
системы с низкой концентрацией коллективи-
зированных электронов.

Работа выполнена в рамках государствен-
ного задания Минобрнауки России для ИФМ 
УрО РАН при поддержке Российского научно-
го фонда, проект № 23-12-00265 (https://rscf.ru/
project/23-12-00265/, ФГБУН Институт физики 
металлов имени М.Н. Михеева УрО РАН, Сверд-
ловская обл.).
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MEAN-FIELD THEORY OF NON-THERMODYNAMIC PHASE 
TRANSITIONS FOR AN ENSEMBLE OF INTERACTING  

QUANTUM OBJECTS
E. V. Rozenfeld1  and  N. V. Mushnikov1, *

1Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences, Ekaterinburg, 620108 Russia
*e-mail: mushnikov@imp.uran.ru

Phase transitions for an open system consisting of an ensemble of interacting quantum subsystems with 
discrete spectrum are studied in the mean-field approximation. In the considered model, the change of an 
internal symmetry of a thermodynamic system upon the second-order phase transition is due to changing 
symmetry of distribution of charge/spin density inside each quantum subsystem. The latter can be caused 
by either splitting of one of lowest degenerated energy level or closing a gap between the levels and appear-
ance of avoided crossing. The effect of external parameters (pressure, field, composition, etc.) results in 
direct change of internal control parameters: level spacing and/or the strength of interaction between ad-
jacent quantum subsystems. Considering a simplest case of the two-level quantum subsystems, expressions 
for the free energy as a function of the internal control parameters were obtained in analytical form. The 
behavior of the heat capacity and susceptibility for different regions of the low-temperature phase diagram 
including the area of quantum fluctuations was determined.

Keywords: phase transitions, quantum systems, mean-field theory
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