Control and Observation Problems in Banach Spaces. Optimal Control and Maximum Principle. Applications to Ordinary Differential Equations in ℝn


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

In a Banach space, we study an equation of the first kind as an observation problem, with the adjoint equation considered as a control problem. The Banach uniqueness and existence method and the monotone mapping method are applied to the study of these observation and control problems. For the case of reflexive Banach spaces, a controllability criterion and an abstract maximum principle are proved. In particular, it is established that continuous observability implies the existence and uniqueness of the solution of the inverse controllability problem and an estimate for the solution.

作者简介

A. Prilepko

Lomonosov Moscow State University

编辑信件的主要联系方式.
Email: prilepko.ai@yandex.ru
俄罗斯联邦, Moscow, 119991

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Inc., 2019