Minimax Solution of Functional Hamilton-Jacobi Equations for Neutral Type Systems


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We consider the Cauchy problem for a functional Hamilton-Jacobi equation with coinvariant derivatives corresponding to dynamical systems of the neutral type. A definition of minimax (generalized) solution of this problem is given and its existence, uniqueness, and also continuous dependence on the parameters are proved. The dependence of the minimax solution on information images is established, which, in particular, permits showing the consistency of the introduced definition with the definition of minimax solution for Hamilton-Jacobi partial differential equations.

作者简介

A. Plaksin

Institute of Mathematics and Mechanics, Ural Branch

编辑信件的主要联系方式.
Email: a.r.plaksin@gmail.com
俄罗斯联邦, Yekaterinburg, 620108

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Inc., 2019