Uniqueness of the Solution of the Cauchy Problem for Parabolic Systems
- 作者: Baderko E.A.1, Cherepova M.F.2
-
隶属关系:
- Lomonosov Moscow State University
- National Research University “Moscow Power Engineering Institute,”
- 期: 卷 55, 编号 6 (2019)
- 页面: 806-814
- 栏目: Partial Differential Equations
- URL: https://journals.rcsi.science/0012-2661/article/view/155044
- DOI: https://doi.org/10.1134/S0012266119060077
- ID: 155044
如何引用文章
详细
We consider the Cauchy problem for a second-order Petrovskii parabolic system with bounded continuous coefficients under the condition that the leading coefficients are Dini continuous in the spatial variables. We prove the uniqueness of the classical solution of this problem in the space of functions increasing with respect to the spatial variables, belonging to the Tikhonov class, and having derivatives that may be unbounded when approaching the initial data plane.
作者简介
E. Baderko
Lomonosov Moscow State University
编辑信件的主要联系方式.
Email: baderko.ea@yandex.ru
俄罗斯联邦, Moscow, 119991
M. Cherepova
National Research University “Moscow Power Engineering Institute,”
编辑信件的主要联系方式.
Email: CherepovaMF@mpei.ru
俄罗斯联邦, Moscow, 111250
补充文件
