Criterion for the Solvability of the Weighted Cauchy Problem for an Abstract Euler–Poisson–Darboux Equation


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

In a Banach space E, we consider the abstract Euler–Poisson–Darboux equation u″(t) + kt−1u′(t) = Au(t) on the half-line. (Here k ∈ ℝ is a parameter, and A is a closed linear operator with dense domain on E.) We obtain a necessary and sufficient condition for the solvability of the Cauchy problem u(0) = 0, lim t→0+tku′(t) = u1, k < 0, for this equation. The condition is stated in terms of an estimate for the norms of the fractional power of the resolvent of A and its derivatives. We introduce the operator Bessel function with negative index and study its properties.

作者简介

A. Glushak

Belgorod National Research University

编辑信件的主要联系方式.
Email: aleglu@mail.ru
俄罗斯联邦, Belgorod, 308015

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2018