Bifurcation of an Oscillatory Mode under a Periodic Perturbation of a Special Oscillator


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We study a bifurcation from the zero solution of the differential equation + xp/q = 0, where p > q > 1 are odd coprime numbers, under periodic (in particular, time-invariant) perturbations depending on a small positive parameter ε. The motion separation method is used to derive the bifurcation equation. To each positive root of this equation, there corresponds an invariant two-dimensional torus (a closed trajectory in the time-invariant case) shrinking to the equilibrium position x = 0 as ε → 0. The proofs use methods of the Krylov-Bogolyubov theory to study time-periodic perturbations and the implicit function theorem in the case of time-invari ant perturbations.

Sobre autores

Yu. Bibikov

St. Petersburg State University

Autor responsável pela correspondência
Email: jy.bibikov@spbu.ru
Rússia, St. Petersburg, 199034

V. Bukaty

St. Petersburg State University

Autor responsável pela correspondência
Email: anna1918@mail.ru
Rússia, St. Petersburg, 199034

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Inc., 2019