Boundary value problems for a nonstrictly hyperbolic equation of the third order
- Авторы: Korzyuk V.I.1, Mandrik A.A.1
-
Учреждения:
- Belarusian State University
- Выпуск: Том 52, № 2 (2016)
- Страницы: 210-219
- Раздел: Partial Differential Equations
- URL: https://journals.rcsi.science/0012-2661/article/view/153660
- DOI: https://doi.org/10.1134/S0012266116020075
- ID: 153660
Цитировать
Аннотация
We study classical solutions of boundary value problems for a nonstrictly hyperbolic third-order equation. The equation is posed in a half-strip and a quadrant of the plane of two independent variables. The Cauchy conditions are posed on the lower boundary of the domain, and the Dirichlet conditions are posed on the lateral boundaries. By using the method of characteristics, we find the analytic form of the solution of considered problems. The uniqueness of the solutions is proved.
Ключевые слова
Об авторах
V. Korzyuk
Belarusian State University
Автор, ответственный за переписку.
Email: korzyuk@bsu.by
Белоруссия, Minsk
A. Mandrik
Belarusian State University
Email: korzyuk@bsu.by
Белоруссия, Minsk
Дополнительные файлы
