Changes in a Finite Part of the Spectrum of the Laplace Operator under Delta-Like Perturbations


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We study the spectrum of the Laplace operator in a bounded simply connected domain with the zero Dirichlet condition on the boundary under delta-like perturbations of the operator at an interior point of the domain. We determine the maximal operator for the perturbations and single out a class of invertible restrictions of this operator whose spectra differ from the spectrum of the original operator by a finite (possibly, empty) set. These results can be viewed as transferring some of H. Hochstadt’s results for Sturm-Liouville operators to Laplace operators.

Sobre autores

B. Kanguzhin

Al-Farabi Kazakh National University; Institute of Mathematics and Mathematical Modeling

Autor responsável pela correspondência
Email: kanbalta@mail.ru
Cazaquistão, Almaty, 050040; Almaty, 050010

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Inc., 2019