Construction of an Arbitrary Suslin Set of Positive Characteristic Exponents in the Perron Effect


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

For an arbitrary bounded Suslin set S ⊂ (0, +∞) and arbitrary parameters m > 1 and λ1 ≤ λ2 < 0, we construct a two-dimensional differential system ẏ = A(t)y + f (t, y), y ∈2, tt0, with infinitely differentiable matrix A(t) and with vector function f (t,y) infinitely differentiable with respect to its arguments such that all of its nonzero solutions are infinitely extendable to the right and S is their set of characteristic exponents. Further, the characteristic exponents of the linear approximation system ẋ = A(t)x, x ∈ ℝ2, are λ1(A) = λ1 ≤ λ2(A) = λ2, its coefficients are bounded on the half-line [t0, +∞), and the perturbation f (t, y)is of order m > 1 in a neighborhood of the origin y = 0 and of an admissible order of growth outside it: ‖ f (t,y)‖ ≤ const ‖ym, y ∈ ℝ2, tt0.

Авторлар туралы

N. Izobov

Institute of Mathematics

Хат алмасуға жауапты Автор.
Email: izobov@im.bas-net.by
Белоруссия, Minsk, 220072

A. Il’in

Lomonosov Moscow State University

Хат алмасуға жауапты Автор.
Email: iline@cs.msu.su
Ресей, Moscow, 119991

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Inc., 2019