Classes of uniform convergence of spectral expansions for the one-dimensional Schrödinger operator with a distribution potential
- Autores: Kritskov L.V.1
-
Afiliações:
- Lomonosov Moscow State University
- Edição: Volume 53, Nº 5 (2017)
- Páginas: 583-594
- Seção: Ordinary Differential Equations
- URL: https://journals.rcsi.science/0012-2661/article/view/154378
- DOI: https://doi.org/10.1134/S0012266117050020
- ID: 154378
Citar
Resumo
For the self-adjoint Schrödinger operator ℒ defined on ℝ by the differential operation −(d/dx)2 + q(x) with a distribution potential q(x) uniformly locally belonging to the space W2−1, we describe classes of functions whose spectral expansions corresponding to the operator ℒ absolutely and uniformly converge on the entire line ℝ. We characterize the sharp convergence rate of the spectral expansion of a function using a two-sided estimate obtained in the paper for its generalized Fourier transforms.
Sobre autores
L. Kritskov
Lomonosov Moscow State University
Autor responsável pela correspondência
Email: kritskov@cs.msu.su
Rússia, Moscow, 119992
Arquivos suplementares
