Classes of uniform convergence of spectral expansions for the one-dimensional Schrödinger operator with a distribution potential


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

For the self-adjoint Schrödinger operator ℒ defined on ℝ by the differential operation −(d/dx)2 + q(x) with a distribution potential q(x) uniformly locally belonging to the space W2−1, we describe classes of functions whose spectral expansions corresponding to the operator ℒ absolutely and uniformly converge on the entire line ℝ. We characterize the sharp convergence rate of the spectral expansion of a function using a two-sided estimate obtained in the paper for its generalized Fourier transforms.

Sobre autores

L. Kritskov

Lomonosov Moscow State University

Autor responsável pela correspondência
Email: kritskov@cs.msu.su
Rússia, Moscow, 119992

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2017