Strong solutions of periodic parabolic problems with discontinuous nonlinearities


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We study the problem of finding time-periodic solutions of a parabolic equation with the homogeneous Dirichlet boundary condition and with a discontinuous nonlinearity. We assume that the nonlinearity is equal to the difference of two superpositionally measurable functions nondecreasing with respect to the state variable. For such a problem, we prove the principle of lower and upper solutions for the existence of strong solutions without additional constraints on the “jumping-up” discontinuities in the nonlinearity. We obtain existence theorems for strong solutions of this class of problems, including theorems on the existence of two nontrivial solutions.

Sobre autores

V. Pavlenko

Chelyabinsk State University

Autor responsável pela correspondência
Email: pavlenko@csu.ru
Rússia, Chelyabinsk

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2016