Boundary value problem for a first-order partial differential equation with a fractional discretely distributed differentiation operator
- Авторлар: Pskhu A.V.1
-
Мекемелер:
- Institute of Applied Mathematics and Automation
- Шығарылым: Том 52, № 12 (2016)
- Беттер: 1610-1623
- Бөлім: Partial Differential Equations
- URL: https://journals.rcsi.science/0012-2661/article/view/154202
- DOI: https://doi.org/10.1134/S0012266116120089
- ID: 154202
Дәйексөз келтіру
Аннотация
We solve a boundary value problem for a first-order partial differential equation in a rectangular domain with a fractional discretely distributed differentiation operator. The fractional differentiation is given by Dzhrbashyan–Nersesyan operators. We construct a representation of the solution and prove existence and uniqueness theorems. The results remain valid for the corresponding equations with Riemann–Liouville and Caputo derivatives. In terms of parameters defining the fractional differential operator, we derive necessary and sufficient conditions for the solvability of the problem.
Авторлар туралы
A. Pskhu
Institute of Applied Mathematics and Automation
Хат алмасуға жауапты Автор.
Email: pskhu@list.ru
Ресей, Nalchik
Қосымша файлдар
