Peculiarities of Biofilms Formation by Campylobacter Bacteria in Mixed Populations with Other Microbial Contaminants of Food Products


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Peculiarities of biofilms formation by Campylobacter bacteria in mixed populations with other microbial contaminants was studied by real-time impedance spectroscopy on an automated xCelligence real time cell analyzer (RTCA). This method is based on measuring the medium resistance in special plates (E-plates) with interdigitated microelectrodes. Coculturing of campylobacter with coliform bacteria is accompanied by film formation; the intensity of this process varies depending on the type of the test cultures and the nature of their interaction in mixed populations. Film formation by C. jejuni during co-culturing with enterobacteria is maximum during the first hours and depends on the presence of stress factors in the environment. The biomatrix film was synthesized by 3 times more intensively in the presence of oxygen than in microaerobic conditions, and also by 1.7-4.3 times more active in the mixed culture with Enterobacter cloacae, E. coli, and K. pneumoniae. During co-culturing of campylobacter with salmonella, no enhanced film formation by the tested strains was observed. Unlike members of the genus Enterobacter intensively producing exopolysaccharides, pathogenic member of Enterobacteriaceae, salmonella, demonstrated weak capacity to form film matrix. The study of film formation by Campylobacter allows more accurate assessment of the effectiveness of sanitary bactericidal treatment of food industry facilities, predict the appearance of biofilms and the intensity of their formation depending son the nature of the antimicrobial effect and the used means.

Sobre autores

N. Efimochkina

Federal Research Center for Nutrition, Biotechnology and Food Safety

Autor responsável pela correspondência
Email: karlikanova@ion.ru
Rússia, Moscow

V. Stetsenko

Federal Research Center for Nutrition, Biotechnology and Food Safety

Email: karlikanova@ion.ru
Rússia, Moscow

S. Sheveleva

Federal Research Center for Nutrition, Biotechnology and Food Safety

Email: karlikanova@ion.ru
Rússia, Moscow


Declaração de direitos autorais © Springer Science+Business Media, LLC, part of Springer Nature, 2019

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies