Специфические проблемы при выделении геномной ДНК из растений: пути решения

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Важную роль в современных ботанических исследованиях играют различные молекулярно-генетические методы: секвенирование генома, ПЦР, AFLP-анализ и т.п. Эти методы требуют использования высококачественной (т.е. хорошо очищенной и не деградировавшей) геномной ДНК. Однако выделение такой ДНК из растений осложнено широким спектром органических соединений, загрязняющих ДНК и резко снижающих ее качество. В результате протоколы выделения ДНК из растений обычно отличаются трудоемкостью, большими затратами времени и требуют приобретения дорогостоящих реагентов, большинство из которых производится за рубежом. При массовом выделении ДНК из растительного материала перечисленные недостатки имеют большое значение, особенно с учетом текущих проблем с импортом. Более того, не существует универсального протокола, пригодного для любых видов растений и любых вариантов используемого растительного материала: в разных случаях приходится применять разные протоколы и зачастую вводить в них дополнительные модификации. К перспективным путям преодоления этих проблем относится поиск упрощенных методов выделения ДНК из растений, а также использование специально подготовленного исходного материала.

Об авторах

У. А. Галактионова

ООО Вега ГК Алкор Био; Санкт-Петербургский государственный университет

Email: o.tihodeev@spbu.ru
Россия, 192148, Санкт-Петербург, Железнодорожный проспект 40А; Россия, 199034, Санкт-Петербург, Университетская наб., 7/9/11

В. Н. Большаков

ООО Вега ГК Алкор Био

Email: o.tihodeev@spbu.ru
Россия, 192148, Санкт-Петербург, Железнодорожный проспект 40А

М. Ю. Тиходеева

Санкт-Петербургский государственный университет

Email: o.tihodeev@spbu.ru
Россия, 199034, Санкт-Петербург, Университетская наб., 7/9/11

О. Н. Тиходеев

Санкт-Петербургский государственный университет

Автор, ответственный за переписку.
Email: o.tihodeev@spbu.ru
Россия, 199034, Санкт-Петербург, Университетская наб., 7/9/11

Список литературы

  1. Aggarwal G., Edhigalla P., Walia P. 2022. A comprehensive review of high-quality plant DNA isolation. – The Pharma Innovation Journal. SP-11 (6): 171–176.
  2. Ahmad S., Ganaie M., Qazi P., Verma V., Basir S., Qazi G. 2004. Rapid DNA isolation protocol for angiospermic plants. – Bulg. J. Plant Physiol. 30 (1–2): 25–33.
  3. Allen G., Flores-Vergara M., Krasynanski S., Kumar S., Thompson W. 2006. A modified protocol for rapid DNA isolation from plant tissues using cetyltrimethylammonium bromide. – Nature Protocols. 1 (5): 2320–2325. https://doi.org/10.1038/nprot.2006.384
  4. Aljanabi S., Martinez I. 1997. Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques. Nucleic Acids Research. 25 (22): 4692–4693. https://doi.org/10.1093/nar/25.22.4692
  5. Arif I. A., Bakir M.A., Khan H.A., Al Farhan A.H., Al Homaidan A.A., Bahkali A.H., Sadoon M.A., Shobrak M. 2010. A brief review of molecular techniques to assess plant diversity. –Int. J. Mol. Sci. 11 (5): 2079–2096. https://doi.org/10.3390/ijms11052079
  6. Bailleul A.M., Li Z. 2021. DNA staining in fossil cells beyond the Quaternary: Reassessment of the evidence and prospects for an improved understanding of DNA preservation in deep time. – Earth-Science Reviews. 216: 103600. https://doi.org/10.1016/j.earscirev.2021.103600
  7. Barnwell P., Blanchard A.N., Bryant J.A., Smirnoff N., Weir A.F. 1998. Isolation of DNA from the highly mucilaginous succulent plant Sedum telephium. – Plant Mol. Biol. Rep. 16: 133–138. https://doi.org/10.1023/A:1007473302551
  8. Benito C.A. Figueiras M., Zaragoza C., Gallego F.J., del Pena A. 1993. Rapid identification of Triticeae genotypes from single seeds using the polymerase chain reaction. – Plant Mol. Biol. 21: 181–183. https://doi.org/10.1007/BF00039629
  9. Bi V., Harvengt L., Chandelier A., Mergeai G., Jardin P. 1996 Improved RAPD amplification of recalcitrant plant DNA by the use of activated charcoal during DNA extraction. – Plant Breed. 115 (3): 205–206. https://doi.org/10.1111/j.1439-0523.1996.tb00905.x
  10. Blackwell A., Stuart A.E., Estambale B.B. 2003. The repellent and antifeedant activity of Myrica gale oil against Aedes aegypti mosquitoes and its enhancement by the addition of salicyluric acid. – J. R. Coll. Physicians Edinb. 33: 209–214.
  11. Carpi F.M., Di Pietro F., Vincenzetti S., Mignini F., Napolioni V. 2011. Human DNA Extraction Methods: Patents and Applications. – Recent Patents DNA Gene Seq. 5 (1): 1–7. https://doi.org/10.2174/187221511794839264
  12. Couch J.A., Fritz P.J. 1990. Isolation of DNA from plants high in polyphenolics. – Plant Mol. Biol. Rep. 8: 8–12. https://doi.org/10.1007/BF02668875
  13. Cseke L.J., Kirakosyan A., Kaufman P.B., Westfall M.V. 2012. Handbook of molecular and cellular methods in biology and medicine (3rd Edition). Boca Raton, UK. 735 p.
  14. Dairawan M., Shetty P.J. 2020. The evolution of DNA extraction methods. – Am. J. Biomed. Sci. Res. 8: 39–45. http://dx.doi.org/10.34297/AJBSR.2020.08.001234
  15. Daniel R. 2005. The metagenomics of soil. – Nat. Rev. Microbiol. 3 (6): 470–478. https://doi.org/10.1038/nrmicro1160
  16. Dellaporta S.L., Wood J., Hicks J.B. 1983a. Maize DNA minipreps. – Maize Gen. Coop. News. 57: 26–29.
  17. Dellaporta S.L., Wood J., Hicks J.B. 1983b. A plant DNA minipreparation: version II. – Plant Mol. Biol. Rep. 1: 19–21. https://doi.org/10.1007/BF02712670
  18. Dhaliwal A. 2013. DNA extraction and purification. – Mater Methods. 3: 191. https://doi.org/10.13070/mm.en.3.191
  19. Doyle J.J., Doyle J.L. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. – Phytochem. Bull. 19: 11–15.
  20. Doyle J. 1991. DNA Protocols for Plants. – In: Molecular Techniques in Taxonomy. Berlin. P. 283–293. https://doi.org/10.1007/978-3-642-83962-7_18
  21. Edge-Garza D., Rowland T., Haendiges S., Peace C. 2014. A high-throughput and cost-efficient DNA extraction protocol for the tree fruit crops of apple, sweet cherry, and peach relying on silica beads during tissue sampling. – Mol. Breed. 34 (4): 2225–2228. https://doi.org/10.1007/s11032-014-0160-x
  22. Edwards K., Johnstone C., Thompson C. 1991. A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. – Nucleic Acids Res. 9: 1349. https://doi.org/10.1093/nar/19.6.1349
  23. Elkins K. 2013. Forensic DNA Biology. Kidlington, England. 224 p.
  24. Evans J. 2001. The complexities of predictive genetic testing. – BMJ. 322 (7293): 1052–1056. https://doi.org/10.1136/bmj.322.7293.1052
  25. Fakruddin M., Sultana R., Rahaman M.M., Hossain M.N., Morshed M. 2017. Comparative study of different methods of genomic DNA extraction from Betel leaf (Piper betle L.) for detection of Salmonella spp. – Bangladesh J. Ind. Microbiol. Biotechnol. 1 (1): 20–28
  26. Fang G., Hammar S., Grumet R. 1992. A quick and inexpensive method for removing polysaccharides from plant genomic DNA. – Biotechniques. 13: 52–56.
  27. Fomina N.A., Antonova O.Y., Chukhina I.G., Gavrilenko T.A. 2019. Gerbarnye kolleltsii v molekulyarno-geneticheskikh issledovaniyakh [Herbarium collections in molecular genetic research]. – Turczaninowia. 22 (4): 104–118. (In Russ.)
  28. Garrett P.E., Tao F., Lawrence N., Ji J., Schumacher R.T., Manak M.M. 2002. Tired of the same old grind in the new genomics and proteomics era? – Targets. 1 (5): 156–162. https://doi.org/10.1016/S1477-3627(02)02228-6
  29. Grisvard J., Guille E. 1973. A new DNA extraction method for plant cells. Preparative Biochemistry. 3 (1): 83–94.
  30. Guidet F. 1994. A powerful new technique to quickly prepare hundreds of plant extracts for PCR and RAPD analyses. – Nucleic Acids Res. 22: 1772–1773. https://doi.org/10.1093/nar/22.9.1772
  31. Gunina A., Kuzyakov Y. 2015. Sugars in soil and sweets for microorganisms: review of origin, content, composition and fate. – Soil Biol. Biochem. 90: 87–100. https://doi.org/10.1016/j.soilbio.2015.07.021
  32. Hadrys H., Balick M., Schierwater B. 1992. Applications of random amplified polymorphic DNA (RAPD) in molecular ecology. – Mol. Ecol. 1 (1): 55–63. https://doi.org/10.1111/j.1365-294X.1992.tb00155.x
  33. Ivanter E.V., Kuznetsov O.L. (eds.). 2007. Krasnaya Kniga Respubliki Karelia [Red Book of the Republic of Karelia]. Petrozavodsk. 364 p.
  34. John M. 1992. An efficient method for isolation of RNA and DNA from plants containing polyphenolics. – Nucleic Acids Res. 20 (9): 2381–2381. https://doi.org/10.1093/nar/20.9.2381
  35. Kaiser C., Michaelis S., Mitchell A. 1994. Methods in Yeast Genetics. Cold Spring Harbor Laboratory Press. 234 p.
  36. Kashina A.A., Oskolsky A.A. 2009. Diagnostika Myrica gale i M. tomentosa (Myricaceae) na osnove anatomichaskikh priznakov [Diagnostics of Myrica gale and M. tomentosa (Myricaceae) based on the anatomic traits]. – Botanicheskii zhurnal. 94(9): 1294–1302. (In Russ.)
  37. Kim C., Lee C., Shin J., Chung Y., Hyung N. 1997. A simple and rapid method for. isolation of high-quality genomic DNA from fruit trees and conifers using PVP. Nucleic Acids Res. 25 (5): 1085–1086. https://doi.org/10.1093/nar/25.5.1085
  38. Komarov V.L. (ed.) 1936. Voskovnik bolotmyi [Sweet gale]. – In.: Flora of SSSR. V. 5. M.-L. pp. 243–244. (In Russ.)
  39. Korolyuk E., Makunin A., Matveeva T. 2015. Relationships and generic delimitation of Eurasian genera of the subtribe Asterinae (Astereae, Asteraceae) using molecular phylogeny of ITS. – Turkish J. Bot. 39 (5): 808–824. https://doi.org/10.3906/bot-1410-12
  40. Kotchoni S.O., Gachomo E.W. 2009. A rapid and hazardous reagent free protocol for genomic DNA extraction suitable for genetic studies in plants. – Mol. Biol. Reports. 36: 1633–1636. https://doi.org/10.1007/s11033-008-9362-9
  41. Kotchoni S., Gachomo E., Jimenez-Lopez J. 2011. A plant cocktail amenable for PCR-based genetic analysis in Arabidopsis thaliana. – Mol. Biol. Rep. 38 (8): 5281–5284. https://doi.org/10.1007/s11033-011-0677-6
  42. Krinitsina A.A., Sizova T.V., Zaika M.A., Speranskaya A.S., Sukhorukov A.P. 2015. A rapid and cost-effective method for DNA extraction from archival herbarium specimens. Biochemistry (Moscow). 80: 1478–1484. https://doi.org/10.1134/S0006297915110097
  43. Liang H., Deng Y., Wang C., Xu X. 2015. A high-throughput DNA extraction method from rice seeds. – Biotechnol. Biotechnol. Equip. 30 (1): 32–35. https://doi.org/10.1080/13102818.2015.1088401
  44. Lodhi M., Ye G., Weeden N., Reisch B. 1994. A simple and efficient method for DNA extraction from grapevine cultivars and Vitis species. – Plant Mol. Biol. Rep. 12 (1): 6–13. https://doi.org/10.1007/BF02668658
  45. Luro F., Laigret F. 1995. Preparation of high molecular weight genomic DNA from nuclei of woody plants. – Biotechniques. 19: 388–392.
  46. Malterud K.E. 1992. C-methylated dihydrochalcones from Myrica gale fruit exudate. – Acta Pharm. Nord. 4: 65–68.
  47. Markman A.L. 1963. Khimiya lipidov [Lipids Chemistry]. V. 1. Zhirnye kisloty. Tashkent. 174 p. (In Russ.)
  48. Markman A.L. 1970. Khimiya lipidov [Lipids Chemistry]. V. 2. Tashkent. 223 p. (In Russ.)
  49. Martínez-Caballero S., Cano-Sánchez P., Mares-Mejía I., Díaz-Sánchez A.G., Macías-Rubalcava M.L., Hermoso J.A., Rodríguez-Romero A. 2014. Comparative study of two GH 19 chitinase-like proteins from Hevea brasiliensis, one exhibiting a novel carbohydrate-binding domain. – The FEBS J. 281 (19): 4535–4554. https://doi.org/10.1111/febs.12962
  50. Michiels A., Van den Ende W., Tucker M., Van Riet L., Van Laere A. 2003. Extraction of high-quality genomic DNA from latex-containing plants. – Anal. Biochem. 315 (1): 85–89.
  51. Miller S.A., Dykes D.D., Polesky H.F. 1988. A simple salting out procedure for extracting DNA from human nucleated cells. – Nucleic Acids Res. 16 (3): 1215. https://doi.org/10.1093%2Fnar%2F16.3.1215
  52. Min J.H., Woo M.K., Yoon H.Y., Jang J.W., Wu J.H., Lim C.S., Kim Y.K. 2014. Isolation of DNA using magnetic nanoparticles coated with dimercaptosuccinic acid. – Analyt. Biochem. 447: 114–118. https://doi.org/10.1016/j.ab.2013.11.018
  53. Murray M.G., Thompson W.F. 1980. Rapid isolation of high molecular weight DNA. – Nucleic Acids Res. 8: 4321–4325. https://doi.org/10.1093%2Fnar%2F8.19.4321
  54. Noorbakhsh H., Khorasgani M.R. 2022. Date (Phoenix dactylifera L.) polysaccharides: a review on chemical structure and nutritional properties. – J. Food Meas. Charact. 16 (4): 3240–3250. https://doi.org/10.1007/s11694-022-01425-y
  55. Ohlrogge J.B., Browse J., Somerville C.R. 1991. The genetics of plant lipids. – Biochim. Biophys. Acta (BBA)-Lipids and Lipid Metabolism. 1082 (1): 1–26. https://doi.org/10.1016/0005-2760(91)90294-R
  56. Parducci L., Bennett K.D., Ficetola G.F., Alsos I.G., Suyama Y., Wood J.R., Pedersen M.W. 2017. Ancient plant DNA in lake sediments. – New Phytol. 214 (3): 924–942. https://doi.org/10.1111/nph.14470
  57. Peterson D., Boehm K., Stack S. 1997. Isolation of milligram quantities of nuclear DNA from tomato (Lycopersicon esculentum), a plant containing high levels of polyphenolic compounds. – Plant Mol. Biol. Rep. 15 (2): 148–153. https://doi.org/10.1007/BF02812265
  58. Peterson J., Dwyer J. 1998. Flavonoids: dietary occurrence and biochemical activity. Nutrition Res. 18(12): 1995–2018. https://doi.org/10.1016/S0271-5317(98)00169-9
  59. Popovici J., Bertrand C., Bagnarol E., Fernandez M.P., Comte G. 2008. Chemical composition of essential oil and headspace-solid microextracts from fruits of Myrica gale L. and antifungal activity. – Nat. Product Res. 22 (12): 1024–1032. https://doi.org/10.1080/14786410802055568
  60. Popovici J., Comte G., Bagnarol E., Alloisio N., Fournier P., Bellvert F., Bertrand C., Fernandez M.P. 2010. Differential effects of rare specific flavonoids on compatible and incompatible strains in the Myrica gale-Frankia actinorhizal symbiosis. – Appl. Environ. Microb. 76: 2451–2460. https://doi.org/10.1128/aem.02667-09
  61. Popovici J., Bertrand C., Jacquemoud D., Bellvert F., Fernandez M.P., Comte G., Piola F. 2011. An allelochemical from Myrica gale with strong phytotoxic activity against highly invasive Fallopia x bohemica taxa. – Molecules. 16 (3): 2323–2333. https://doi.org/10.3390/molecules16032323
  62. Procunier J.D., Xu J., Kasha K.J. 1990. A rapid and reliable DNA extraction method for higher plants. – Barley Gene. Newslet. 20: 74–75.
  63. Pyle M.M., Adams R.P. 1989. In situ preservation of DNA in plant specimens. – Taxon. 38 (4): 576–581. https://doi.org/10.2307/1222632
  64. Ribeiro R.A., Lovato M.B. 2007. Comparative analysis of different DNA extraction protocols in fresh and herbarium specimens of the genus Dalbergia. – Genet. Mol. Res. 6: 173–187.
  65. Rittich B., Španová A. 2013. SPE and purification of DNA using magnetic particles. – J. Sep. Sci. 36 (15): 2472–2485. https://doi.org/10.1002/jssc.201300331
  66. Rodionov A.V., Gnutikov A.A., Kotsinyan A.R., Kotseruba V.V., Nosov N.N., Punina E.O., Rayko M.P., Tyupa N.B., Kim E.S. 2017. ITS1–5.8 S rDNA–ITS2 sequence in 35S rRNA genes as marker for reconstruction of phylogeny of grasses (Poaceae family). – Biology Bulletin Rev. 7: 85–102. https://doi.org/10.1134/S2079086417020062
  67. Rogers S., Bendich A. 1985. Extraction of DNA from milligram amounts of fresh, herbari m and mummified plant tissues. – Plant Mol. Biol. 5 (2): 69–76. https://doi.org/10.1007/BF00020088
  68. Rogers S., Bendich A. 1989. Extraction of DNA from plant tissues. – In: Plant Molecular Biology Manual. Springer. P. 73–83. https://doi.org/10.1007/978-94-009-0951-9_6
  69. Rogers S.O., Bendich A.J. 1994. Extraction of total cellular DNA from plants, algae and fungi. – In: Plant Molecular Biology Manual. P. 183–190. https://doi.org/10.1007/978-94-011-0511-8_12
  70. Rosa G.P., Silva B.J., Seca A.M., Moujir L.M., Barreto M.C. 2020. Phytochemicals with added value from Morella and Myrica species. – Molecules. 25 (24): 6052. https://doi.org/10.3390%2Fmolecules25246052
  71. Ryabushkina N.A., Omasheva M.E., Galiakparov N.N. 2012. Spetsifika vydeleniya DNK is rastitel’nykh ob’ektov [Specificity of DNA extraction from plants]. – Biotekhnologia. Teoria I Praktika. 2: 9–26. (In Russ.)
  72. Saiyed Z.M., Ramchand C.N., Telang S.D. 2008. Isolation of genomic DNA using magnetic nanoparticles as a solid-phase support. – J. Physics: Condensed Matter. 20 (20): 204153. https://doi.org/10.1088/0953-8984/20/20/204153
  73. Sangwan R.S., Yadav U., Sangwan N.S. 2000. Isolation of genomic DNA from defatted oil seed residue of opium poppy (Papaver sominiferum). – Plant Mol. Biol. Rep. 18: 265–270. https://doi.org/10.1007/BF02823997
  74. Savolainen V., Cuenoud Ph., Spichiger R., Martinez M.D.P., Crevecoeur M., Manen J.-F. 1995. The use of herbarium specimens in DNA phylogenetics: evaluation and improvement – Plant Syst. Evol. 197: 87–98. https://doi.org/10.1007/BF00984634
  75. Schmidt G. 1950. Nucleic acids, purines, and pyrimidines. – Annu. Rev. Biochem. 19 (1): 149–186.
  76. Sharma K., Lavanya M., Anjaiah V. 2000. A method for isolation and purification of peanut genomic DNA suitable for analytical applications. – Plant Mol. Biol. Rep. 18 (4): 393–393. https://doi.org/10.1007/BF02825068
  77. Sika K.C., Kefela T., Adoukonou-Sagbadja H., Ahoton L., Saidou A., Baba-Moussa L., Baptiste L.J., Kotconi S.O., Gachomo E.W. 2015. A simple and efficient genomic DNA extraction protocol for large scale genetic analyses of plant biological systems. – Plant Gene. 1: 43–45. https://doi.org/10.1016/j.plgene.2015.03.001
  78. Silva B.J., Seca A.M., Barreto M.D.C., Pinto D.C. 2015. Recent breakthroughs in the antioxidant and anti-inflammatory effects of Morella and Myrica species. – Int. J. Mol. Sci. 16 (8): 17160–17180. https://doi.org/10.3390%2Fijms160817160
  79. Soltis P., Doyle J.J. 2012. Molecular systematics of plants II: DNA sequencing. Springer Science & Business Media.
  80. Sylvestre M., Legault J., Dufour D., Pichette A. 2005. Chemical composition and anticancer activity of leaf essential oil of Myrica gale L. – Phytomedicine. 12: 299–304. https://doi.org/10.1016/j.phymed.2003.12.004
  81. Singha D.L., Tuteja N., Boro D., Hazarika G.N., Singh S. 2017. Heterologous expression of PDH47 confers drought tolerance in indica rice. – Plant Cell Tissue Organ Culture (PCTOC). 130: 577–589. https://doi.org/10.1007/s11240-017-1248-x
  82. Svoboda K.P., Inglis A., Hampson J., Galambosi B., Asakawa Y. 1998. Biomass production, essential oil yield and composition of Myrica gale L. harvested from wild populations in Scotland and Finland. – Flavour Frag. J. 13: 367–372. https://doi.org/10.1002/(SICI)1099-1026(199811/12)13:6%3C367::AID-FFJ724%3E3.0.CO;2-M
  83. Takahashi S., Nagano Y. 1984. Rapid procedure for isolation of plasmid DNA and application to epidemiological analysis. – J. Clin. Microbiol. 20 (4): 608–613. https://doi.org/10.1128/jcm.20.4.608-613.1984
  84. Tapia-Tussell R., Quijano-Ramayo A., Rojas-Herrera R., Larque-Saavedra A., Perez-Brito D. 2005. A fast, simple, and reliable high-yielding method for DNA extraction from different plant species. – Mol. Biotechnol. 31 (2): 137–140. https://doi.org/10.1385/mb:31:2:137
  85. Tel-zur N., Abbo S., Myslabodski D., Mizrahi Y. 1999. Modified CTAB Procedure for DNA isolation from epiphytic cacti of the genera Hylocereus and Selenicereus (Cactaceae). – Plant Mol. Biol. Rep. 17 (3): 249–254. https://doi.org/10.1023/A:1007656315275
  86. Teplova V.V., Isakova E.P., Klein O.I., Dergachova D.I., Gessler N.N., Deryabina Y.I. 2018. Natural polyphenols: Biological activity, pharmacological potential, means of metabolic engineering. – Applied Biochemistry and Microbiology. 54: 221–237. https://doi.org/10.1134/S0003683818030146
  87. Vasantha Rupasinghe H.V. 2015. Application of NMR spectroscopy in plant polyphenols associated with human health. – In: Applications of NMR Spectroscopy. Bentham Science Publishers. P. 3–92. https://doi.org/10.1016/B978-1-60805-999-7.50001-X
  88. Volkova E.A., Smagin V.A., Khramtsov V.N. 2021. Soobschestva c Myrica gale L. na bolotakh poberezh’ya Finskogo zaliva (Sankt-Peterburg i Leningradskaya oblast) [Societies with Myrica gale L. in bogs on the edge of Finn Gulf (Saint-Petersburg and Leningrad District]. – Rastitel’nost Rossii. 41: 58–74. (In Russ.)
  89. Vos P., Hogers R., Bleeker M., Reijans M., Lee T.V.D., Hornes M., Frijters A., Pot J., Peleman J., Kuiper M., Zabeau M. 1995. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res. 23 (21): 4407–4414. https://doi.org/10.1093%2Fnar%2F23.21.4407
  90. Wang Z., Megha S., Kebede B., Kav N.N.V., Rahman H. 2022. Genetic and molecular analysis reveals that two major loci and their interaction confer clubroot resistance in canola introgressed from rutabaga. – Plant Genome. 15 (3): e20241. https://doi.org/10.1002/tpg2.20241
  91. Wei W., Zhang Y., Wang L., Li D., Gao Y., Zhang X. 2016. Genetic diversity, population structure, and association mapping of 10 agronomic traits in sesame. – Crop Science. 56 (1): 331–343. https://doi.org/10.2135/cropsci2015.03.0153
  92. Wink M. 2006. An Introduction to Molecular Biotechnology: Molecular Fundamentals, Methods and Application in Modern Biotechnology. Wiley-VCH, Weinheim, Germany. 544 p.
  93. Ziegenhagen B., Guillemaut P., Scholz F. 1993. A procedure for mini-preparation of genomic DNA from needles of silver fir (Abies alba). – Plant Mol. Biol. Rep. 11: 117–121. https://doi.org/10.1007/BF02670469

© У.А. Галактионова, В.Н. Большаков, М.Ю. Тиходеева, О.Н. Тиходеев, 2023

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах