Peroxiredoxins as Key Markers of Radioresistance and Potential Targets in Cancer Radiotherapy

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Radiation therapy is the cornerstone of the treatment of malignant tumors, but its efficacy is often limited by tumor radioresistance and treatment-related toxicity. Peroxiredoxins, multifunctional proteins with antioxidant and chaperone activity, play a key role in maintaining redox homeostasis, regulating signaling pathways, and mediating radioresistance. Due to these properties, they are considered as prognostic biomarkers and potential therapeutic targets for improving the effectiveness of antitumor radiation therapy. The review presents experimental strategies for overcoming radioresistance through peroxiredoxin modulation, including direct targeting, the use of exogenous proteins, engineered mutants, synthetic peptides, nanoplafforms, and combined effects on the peroxiredoxin–thioredoxin system.

作者简介

E. Karmanova

Institute of Cell Biophysics, Russian Academy of Sciences

Pushchino, Russia

S. Parfenyuk

Institute of Cell Biophysics, Russian Academy of Sciences

Pushchino, Russia

O. Glushkova

Institute of Cell Biophysics, Russian Academy of Sciences

Pushchino, Russia

D. Burmistrov

A.M. Prokhorov General Physics Institute, Russian Academy of Sciences

Moscow, Russia

V. Novoselov

Institute of Cell Biophysics, Russian Academy of Sciences

Pushchino, Russia

M. Sharapov

Institute of Cell Biophysics, Russian Academy of Sciences

Email: sharapov.mg@yandex.ru
Pushchino, Russia

参考

  1. Hannon G., Lesch M. L., and Gerber S. A. Harnessing the immunological effects of radiation to improve immunotherapies in cancer. Int. J. Mol. Sci., 24 (8), 7359 (2023). doi: 10.3390/ijms24087359
  2. Locquet M. A., Brahmi M., Blay J. Y., and Dutour A. Radiotherapy in bone sarcoma: the quest for better treatment option. BMC Cancer, 23 (1), 742 (2023). doi: 10.1186/s12885-023-11232-3
  3. Porrazzo A., Cassandri M., D’Alessandro A., Morciano P., Rota R., Marampon F., and Cenci G. DNA repair in tumor radioresistance: insights from fruit flies genetics. Cell. Oncol., 47 (3), 717–732 (2024). doi: 10.1007/s13402-023-00906-6
  4. Zhou T., Zhang L. Y., He J. Z., Miao Z. M., Li Y. Y., Zhang Y. M., Liu Z. W., Zhang S. Z., Chen Y., Zhou G. C., and Liu Y. Q. Mechanisms and perspective treatment of radioresistance in non-small cell lung cancer. Front. Immunol., 14, 1133899 (2023). doi: 10.3389/fimmu.2023.1133899
  5. Шахзадова А. О., Старинский В. В. и Лисичникова И. В. Состояние онкологической помощи населению России в 2022 году. Сибирский онкол. журн., 22 (5), 5 (2023). doi: 10.21294/1814-4861-2023-22-5-5-13
  6. Bray F., Laversanne M., Sung H., Ferlay J., Siegel R. L., Soerjomataram I., and Jemal A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 74 (3), 229–263 (2024). doi: 10.3322/caac.21834
  7. Papież M. A. and Krzyściak W. Biological therapies in the treatment of cancer —update and new directions. Int. J. Mol. Sci., 22 (21), 11694 (2021). doi: 10.3390/ijms222111694
  8. Arif M., Nawaz A. F., Mueen H., Rashid F., Hemeg H. A., and Rauf A. Nanotechnology-based radiation therapy to cure cancer and the challenges in its clinical applications. Heliyon, 9 (6), e17252 (2023). doi: 10.1016/j.heliyon.2023.e17252
  9. Sharapov M. G., Karmanova E. E., and Gudkov S. V. Mechanisms of cancer cell radioresistance: Modern trends and research prospects. Biophysics, 69, 1064–1088 (2024). doi: 10.1134/S0006350924701161
  10. Guan X., Ruan Y., Che X. and Feng W. Dual role of PRDX1 in redox-regulation and tumorigenesis: Past and future. Free Rad. Biol. Med., 210, 120–129 (2024). doi: 10.1016/j.freeradbiomed.2023.11.009
  11. Forshaw T. E., Holmila R., Nelson K. J., Lewis J. E., Kemp M. L., Tsang A. W., Poole L. B., Lowther W. T. and Furdui C. M. Peroxiredoxins in cancer and response to radiation therapies. Antioxidants (Basel), 8(1), 11 (2019). doi: 10.3390/antiox801001
  12. Sharapov M. G., Novoselov V. I., Penkov N. V., Fesenko E. E., Vedunova M. V., Bruskov V. I., and Gudkov S. V. Protective and adaptogenic role of peroxiredoxin 2 (Prx2) in neutralization of oxidative stress induced by ionizing radiation. Free Rad. Biol. Med., 134, 76–86 (2019). doi: 10.1016/j.freeradbiomed.2018.12.032
  13. Obrador E., Salvador R., Villaescusa J. I., Soriano J. M., Estrela J. M., and Montoro A. Radioprotection and radiomitigation: from the bench to clinical practice. Biomedicines, 8 (11), 461 (2020). doi: 10.3390/biomedicines8110461
  14. Nilsson R. and Liu N. A. Nuclear DNA damages generated by reactive oxygen molecules (ROS) under oxidative stress and their relevance to human cancers, including ionizing radiation-induced neoplasia part I: physical, chemical and molecular biology aspects. Radiat. Med. Protect., 1 (3), 140–152 (2020). doi: 10.1016/j.radmp.2020.09.002
  15. Zhang B., Wang Y. and Su Y. Peroxiredoxins, a novel target in cancer radiotherapy. Cancer Lett., 286, 154–160 (2009). doi: 10.1016/j.canlet.2009.04.043
  16. Bruskov V. I., Chernikov A. V., Ivanov V. E., Karmanova E. E., and Gudkov S. V. Formation of the reactive species of oxygen, nitrogen, and carbon dioxide in aqueous solutions under physical impacts. Phys. Wave Phenom., 28, 103–106 (2020). doi: 10.3103/S1541308X2002003X
  17. Sriramulu S., Thoidingjam S., Brown S. L., Siddiqui F., Movsas B. and Nyati S. Molecular targets that sensitize cancer to radiation killing: From the bench to the bedside. Biomed. Pharmacother., 158, 114126 (2023). doi: 10.1016/j.biopha.2022.114126
  18. Hao Y., Jiang H., Thapa P., Ding N., Alshahrani A., Fujii J., Toledano M. B., and Wei Q. Critical role of the sulfiredoxinperoxiredoxin IV axis in urethane-induced non-small cell lung cancer. Antioxidants (Basel), 12 (2), 367 (2023). doi: 10.3390/antiox12020367
  19. Boltman T., Meyer M., and Ekpo O. Diagnostic and therapeutic approaches for glioblastoma and neuroblastoma cancers using chlorotoxin nanoparticles. Cancers, 15 (13), 3388 (2023). doi: 10.3390/cancers15133388
  20. Byun H. K., Kim C., and Seong J. Carbon ion radiotherapy in the treatment of hepatocellular carcinoma. Clin. Mol. Hepatol., 29 (4), 945 (2023). doi: 10.3350/cmh.2023.0217
  21. Bradley J. D., Hu C., Komaki R. R, Masters G. A., Blumenschein G. R., Schild S. E., Bogart J. A., Forster K.M., Magliocco A. M., Kavadi V. S., Narayan S., Iyengar P., Robinson C. G., Wynn R. B., Koprowski C. D., Olson M. R., Meng J., Paulus R., Curran W. J. Jr., and Choy H. Long-term results of NRG oncology RTOG 0617: Standard- versus high-dose chemoradiotherapy with or without cetuximab for unresectable stage III non-small-cell lung cancer. J. Clin. Oncol., 38 (7), 706–714 (2020). doi: 10.1200/JCO.19.01162
  22. Chan Wah Hak C. M. L., Rullan A., Patin E. C., Pedersen M., Melcher A. A., and Harrington K. J. Enhancing anti-tumour innate immunity by targeting the DNA damage response and pattern recognition receptors in combination with radiotherapy. Front. Oncol., 12, 971959 (2022). doi: 10.3389/fonc.2022.971959
  23. Kovalchuk M. V., Deyev S. M., and Sergunova K. A. Targeted nuclear medicine. Achievements, challenges and prospects. Nanobiotechnol. Rep., 18 (4), 524–541 (2023). doi: 10.1134/S2635167623700416
  24. Basu R. and Kopchick J. J. GH and IGF1 in cancer therapy resistance. Endocrine-Related Cancer, 30 (9), e220414 (2023). doi: 10.1530/ERC-22-0414
  25. Guo S., Yao Y., Tang Y., Xin Z., Wu D., Ni C., Huang J., Wei Q., and Zhang T. Radiation-induced tumor immune microenvironments and potential targets for combination therapy. Signal. Transduct. Target. Ther., 8 (1), 205 (2023). doi: 10.1038/s41392-023-01462-z
  26. Carpov D., Buigă R., and Nagy V. M. DNA damage response and potential biomarkers of radiosensitivity in head and neck cancers: clinical implications. Rom. J. Morphol. Embryol., 64 (1), 5–13 (2023). doi: 10.47162/RJME.64.1.01
  27. Sminia P., Guipaud O., Viktorsson K., Ahire V., Baatout S., Boterberg T., Cizkova J., Dostal M., Fernandez-Palomo C., Filipova A., Francois A., Geiger M., Hunter A., Jassim H., Edin N. F. J., Jordan K., Koniarova I., Selvaraj V. K., Meade A. D., Milliat F., Montoro A., Politis C., Savu D., Semont A., Tichy A., Valek V., and Vogin G. Clinical radiobiology for radiation oncology. In: Radiobiology Textbook, Ed. by S. Baatout (Springer, Cham, 2023), pp. 237–309. doi: 10.1007/978-3-031-18810-7_5
  28. Thapa P., Jiang H., Ding N., Hao Y., Alshahrani A., and Wei Q. The role of peroxiredoxins in cancer development. Biology, 12 (5), 666 (2023). doi: 10.3390/biology12050666
  29. Liu Y., Wang P., Hu W., and Chen D. New insights into the roles of peroxiredoxins in cancer. Biomed. Pharmacother., 164, 114896 (2023). doi: 10.1016/j.biopha.2023.114896
  30. Moretton A., Kourtis S., Ganez Zapater A., Calabro C., Espinar Calvo M. L., Fontaine F., Darai E., Abad Cortel E., Block S., Pascual-Reguant L., Pardo-Lorente N., Ghose R., Vander Heiden M. G., Janic A., Muller A. C., Loizou J. I., and Sdelci S. A metabolic map of the DNA damage response identifies PRDX1 in the control of nuclear ROS scavenging and aspartate availability. Mol. Syst. Biol., 19 (7), e11267 (2023). doi: 10.15252/msb.202211267
  31. Ahmed W. and Lingner J. PRDX1 counteracts catastrophic telomeric cleavage events that are triggered by DNA repair activities post oxidative damage. Cell Rep., 33 (5), 108347 (2020). doi: 10.1016/j.celrep.2020.108347
  32. Ježek P. Pitfalls of mitochondrial redox signaling research. Antioxidants, 12, 1696 (2023). doi: 10.3390/antiox12091696
  33. Thapa P., Ding N., Hao Y., Alshahrani A., Jiang H. and Wei Q. Essential roles of peroxiredoxin IV in inflammation and cancer. Molecules, 27, 6513 (2022). doi: 10.3390/molecules27196513
  34. Liao J., Zhang Y., Yang J., Chen L., Zhang J. and Chen X. Peroxiredoxin 6 in stress orchestration and disease interplay. Antioxidants, 14, 379 (2025). doi: 10.3390/antiox14040379
  35. Averill-Bates D. Reactive oxygen species and cell signaling. Biochim. Biophys. Acta (BBA) – Mol. Cell Res., 1871 (2), 119573 (2023). doi: 10.1016/j.bbamcr.2023.119573
  36. Aramouni K., Assaf R., Shaito A., Fardoun M., Al-Asmakh M., Sahebkar A., and Eid A. H. Biochemical and cellular basis of oxidative stress: implications for disease onset. J. Cell Physiol, 238 (9), 1951–1963 (2023). doi: 10.1002/jcp.31071
  37. Skoko J. J., Cao J., Gaboriau D., Attar M., Asan A., Hong L., Paulsen C. E., Ma H., Liu Y., Wu H., Harkness T., Furdui C. M., Manevich Y., Morrison C. G., Brown E. T., Normolle D., Spies M., Spies M. A., Carroll K., and Neumann C. A. Redox regulation of RAD51 Cys319 and homologous recombination by peroxiredoxin 1. Redox Biol., 56, 102443 (2022). doi: 10.1016/j.redox.2022.102443
  38. Sharapov M. G., Novoselov V. I., Fesenko E. E., BruskovV. I., and Gudkov S. V. The role of peroxiredoxin 6 in neutralization of X-ray mediated oxidative stress: effects on gene expression, preservation of radiosensitive tissues and postradiation survival of animals. Free Rad. Res., 51(2), 148–166 (2017). doi: 10.1080/10715762.2017.1289377
  39. Villar S. F., Ferrer-Sueta G., and Denicola A. The multifaceted nature of peroxiredoxins in chemical biology. Curr. Opin. Chem. Biol., 76, 102355 (2023). doi: 10.1016/j.cbpa.2023.102355
  40. Richardson R. B. and Mailloux R. J. Mitochondria need their sleep: redox, bioenergetics, and temperature regulation of circadian rhythms and the role of cysteine-mediated redox signaling, uncoupling proteins, and substrate cycles. Antioxidants, 12 (3), 674 (2023). doi: 10.3390/antiox12030674
  41. Sies H., Belousov V. V., Chandel N. S., Davies M. J., Jones D. P., Mann G. E., Murphy M. P., Yamamoto M., and Winterbourn C. Defining roles of specific reactive oxygen species (ROS) in cell biology and physiology. Nat. Rev. Mol. Cell Biol., 23, 499–515 (2022). doi: 10.1038/s41580-022-00456-z
  42. Zhang H., Mao Z., Kang Y., Zhang W., Mei L., and Ji X. Redox regulation and its emerging roles in cancer treatment. Coordinat. Chem. Rev., 475, 214897 (2023). doi: 10.1016/j.ccr.2022.214897
  43. Jin P., Li L., Nice E. C., and Huang C. Nanomedicinebased modulation of redox status for cancer therapy. Austral. J. Chem., 76 (8), 337–350 (2023).
  44. Sharma V., Bandyopadhyay S., Sikka K., Kakkar A., Hariprasad G., and Singh S. B. Label-free proteomics of oral mucosa tissue to identify potential biomarkers that can flag predilection of precancerous lesions to oral cell carcinoma: a preliminary study. Disease Markers, 2023, 1329061 (2023). doi: 10.1155/2023/1329061
  45. Checker R., Bhilwade H. N., Nandha S. R., Patwardhan R. S., Sharma D., and Sandur S. K. Withaferin A, a steroidal lactone, selectively protects normal lymphocytes against ionizing radiation-induced apoptosis and genotoxicity via activation of the ERK/Nrf-2/HO-1 axis. Toxicol. Appl. Pharmacol., 461, 116389 (2023). doi: 10.1016/j.taap.2023.116389
  46. Balasubramanian P., Vijayarangam V., Palaniyandi T., Ravi M., Natarajan S., Viswanathan S., Baskar G., Rahaman M. A., Wahab A., and Surendran H. Implications and progression of peroxiredoxin 2 (PRDX2) in various human diseases. Pathology – Research and Practice, 254, 155080 (2024). doi: 10.1016/j.prp.2023.155080
  47. Ding N., Jiang H., Thapa P., Hao Y., Alshahrani A., Allison D., Izumi T., Rangnekar V. M., Liu X., and Wei Q. Peroxiredoxin IV plays a critical role in cancer cell growth and radioresistance through the activation of the Akt/GSK3 signaling pathways. J. Biol. Chem., 298 (7), 102123 (2022). doi: 10.1016/j.jbc.2022.102123
  48. Szeliga M. and Rola R. Conoidin A, a covalent inhibitor of peroxiredoxin 2, reduces growth of glioblastoma cells by triggering ROS production. Cells, 12, 1934 (2023). doi: 10.3390/cells12151934
  49. Wu M., Deng C., Lo T. H., Chan K. Y., Li X., and Wong C. M. Peroxiredoxin, senescence, and cancer. Cells, 11 (11), 1772 (2022). doi: 10.3390/cells11111772
  50. Cunha A., Silva P. M. A., Sarmento B., and Queiros O. Targeting glucose metabolism in cancer cells as an approach to overcoming drug resistance. Pharmaceutics, 15, 2610 (2023). doi: 10.3390/pharmaceutics15112610
  51. Ding Y., Ye B., Sun Z., Mao Z., and Wang W. Reactive Oxygen Species‐Mediated Pyroptosis with the Help of Nanotechnology: Prospects for Cancer Therapy. Adv. NanoBiomed Res., 3 (1), 2200077 (2023). doi: 10.1002/anbr.202200077
  52. Nguyen N. T. T., Yamada T., and Yamada K. H. Peptidebased agents for cancer treatment: current applications and future directions. Int. J. Mol. Sci., 24, 12931 (2023). doi: 10.3390/ijms241612931
  53. Xie N., Shen G., Gao W., Huang Z., Huang C., and Fu L. Neoantigens: promising targets for cancer therapy. Signal Transduct. Target. Ther., 8, 9 (2023). doi: 10.1038/s41392-022-01270-x
  54. Su S. and Kang P. Recent advances in nanocarrier-assisted therapeutics delivery systems. Pharmaceutics, 12, 837 (2020). doi: 10.3390/pharmaceutics12090837
  55. Fujita H., Ohta S., Nakamura N., Somiya M. and HorieM. Progress of endogenous and exogenous nanoparticles for cancer therapy and diagnostics. Genes (Basel), 14 (2), 259 (2023). doi: 10.3390/genes14020259
  56. Li J., Wu T., Li S., Chen X., Deng Z. and Huang Y. Nanoparticles for cancer therapy: a review of influencing factors and evaluation methods for biosafety. Clin. Translat. Oncol., 25 (7), 2043–2055 (2023). doi: 10.1007/s12094-023-03117-5
  57. Sun L., Liu H., Ye Y., Lei Y., Islam R., Tan S., Tong R., Miao Y. B., and Cai L. Smart nanoparticles for cancer therapy. Signal Transduct. Target. Ther., 8(1), 418 (2023). doi: 10.1038/s41392-023-01642-x
  58. Tan G. R., Hsu C. S., and Zhang Y. pH-Responsive hybrid nanoparticles for imaging spatiotemporal pH changes in biofilm-dentin microenvironments. ACS Appl. Mater. Interfaces, 13, 46247–46259 (2021). doi: 10.1021/acsami.1c11162
  59. Lee Y. H., Tai D., Yip C., Choo S. P., and Chew V. Combinational immunotherapy for hepatocellular carcinoma: radiotherapy, immune checkpoint blockade and beyond. Front. Immunol., 11, 568759 (2020). doi: 10.3389/fimmu.2020.568759
  60. An L., Li M., and Jia Q. Mechanisms of radiotherapy resistance and radiosensitization strategies for esophageal squamous cell carcinoma. Mol. Cancer, 22 (1), 140 (2023). doi: 10.1186/s12943-023-01839-2
  61. Zheng D., Li J., Yan H., Zhang G., Li W., Chu E., and Wei N. Emerging roles of Aurora-A kinase in cancer therapy resistance. Acta Pharmaceut. Sinica B, 13 (7), 2826–2843 (2023). doi: 10.1016/j.apsb.2023.03.013
  62. Wang K., Michelakos T., Wang B., Shang Z., DeLeo A. B., Duan Z., Hornicek F. J., Schwab J. H., and Wang X. Targeting cancer stem cells by disulfiram and copper sensitizes radioresistant chondrosarcoma to radiation. Cancer Lett., 505, 37–48 (2021). doi: 10.1016/j.canlet.2021.02.002
  63. He L., Yu X., and Li W. Recent progress and trends in Xrayinduced photodynamic therapy with low radiation doses. ACS Nano, 16 (12), 19691–19721 (2022). doi: 10.1021/acsnano.2c07286
  64. Pan Y., Zhu Y., Xu C., Pan C., Shi Y., Zou J., Li Y., Hu X., Zhou B., Zhao C., Gao Q., Zhang J., Wu A., Chen X., and Li J. Biomimetic yolk-shell nanocatalysts for activatable dual-modal-image-guided triple-augmented chemodynamic therapy of cancer. ACS Nano, 16 (11), 19038–19052 (2022). doi: 10.1021/acsnano.2c08077
  65. Jomova K., Raptova R., Alomar S. Y., Alwasel S. H., Nepovimova E., Kuca K., and Valko M. Reactive oxygen species, toxicity, oxidative stress, and antioxidants: chronic diseases and aging. Arch. Toxicol., 97 (10), 2499–2574 (2023). doi: 10.1007/s00204-023-03562-9
  66. Caverzan M. D., Beauge L., Chesta C. A., Palacios R. E., and Ibarra L. E. Photodynamic therapy of glioblastoma cells using doped conjugated polymer nanoparticles: an in vitro comparative study based on redox status. J. Photochem. Photobiol. B, 212, 112045 (2020). doi: 10.1016/j.jphotobiol.2020.112045
  67. Yu X., Li Z., Zhang Y., Xu M., Che Y., Tian X., Wang R., Zou K., and Zou L. β-Elemene inhibits radiation- and hypoxia-induced macrophage infiltration via Prx-1/NFκB/HIF-1α signaling pathway. OncoTargets and Therapy, 12, 4203–4211 (2019). doi: 10.2147/OTT.S196910
  68. Hao J., Song Z., Su J., Li L., Zou L., and Zou K. The PRX-1/TLR4 axis promotes hypoxia-induced radiotherapy resistance in non-small cell lung cancer by targeting the NF-κB/p65 pathway. Cell. Signal., 110, 110806 (2023). doi: 10.1016/j.cellsig.2023.110806
  69. Sun H. N., Liu Y., Wang J. N., Wang C., Liu R., Kong L. Z., Zhen X., Chandimali N., Cui Y. D., Kim S.U., Lee D. S., Yu D. Y., Kim J. S., Jeong D. K., Kwon T., and Han Y. H. Protective role of peroxiredoxin I in heat-killed Staphylococcus aureus-infected mice. In Vivo, 33 (3), 749–755 (2019). doi: 10.21873/invivo.11535
  70. Li J., Sun Y., Zhao X., Ma Y., Xie Y., Liu S., Hui B., Shi X., Sun X., and Zhang X. Radiation induces IRAK1 expression to promote radioresistance by suppressing autophagic cell death via decreasing the ubiquitination of PRDX1 in glioma cells. Cell Death & Disease, 14 (4), 259 (2023). doi: 10.1038/s41419-023-05732-0
  71. Klopotowska M., Bajor M., Graczyk-Jarzynka A., Kraft A., Pilch Z., Zhylko A., Firczuk M., Baranowska I., Lazniewski M., Plewczynski D., Goral A., Soroczynska K., Domagala J., Marhelava K., Slusarczyk A., Retecki K., Ramji K., Krawczyk M., Temples M. N., Sharma B., Lachota M., Netskar H., Malmberg K. J., Zagozdzon R., and Winiarska M. PRDX-1 supports the survival and antitumor activity of primary and CAR-modified NK cells under oxidative stress. Cancer Immunol. Res., 10 (2), 228–244 (2022). doi: 10.1158/2326-6066.CIR-20-1023
  72. Attaran S., Skoko J. J., Hopkins B. L., Wright M. K., Wood L. E., Asan A., Woo H. A., Feinberg A., and Neumann C. A. Peroxiredoxin-1 Tyr194 phosphorylation regulates LOX-dependent extracellular matrix remodelling in breast cancer. Brit. J. Cancer, 125 (8), 1146–1157 (2021). doi: 10.1038/s41416-021-01510-x
  73. Dasari C., Reddy K. R. K., Natani S., Murthy T. R. L., Bhukya S., and Ummanni R. Tumor protein D52 (isoform 3) interacts with and promotes peroxidase activity of peroxiredoxin 1 in prostate cancer cells implicated in cell growth and migration. Biochim. Biophys. Acta (Mol. Cell Res.), 1866 (8), 1298–1309 (2019). doi: 10.1016/j.bbamcr.2019.04.007
  74. Feng T., Zhao R., Sun F., Lu Q., Wang X., Hu J., Wang S., Gao L., Zhou Q., and Xiong X. TXNDC9 regulates oxidative stress-induced androgen receptor signaling to promote prostate cancer progression. Oncogene, 39, 356–367 (2020). doi: 10.1038/s41388-019-0991-3
  75. Ali R., Alhaj Sulaiman A., Memon B., Pradhan S., Algethami M., Aouida M., McKay G., Madhusudan S., Abdelalim E. M., and Ramotar D. Altered regulation of the glucose transporter GLUT3 in PRDX1 null cells causes hypersensitivity to arsenite. Cells, 12 (23), 2682 (2023). doi: 10.3390/cells12232682
  76. Li H., Furusawa T., Cavero R., Xiao Y., Chari R., Wu X., Sun D., Hartmann O., Dhall A., Holewinski R., Andresson T., Karim B., Villamor-Paya M., Gallardo D., Day C. P., Pal L. R., Nair N. U., Ruppin E., Aladjem M. I., Pommier Y., Diefenbacher M. E., Lim J.M., Levine R. L., Stracker T. H., and Weyemi U. Metabolic dependency mapping identifies peroxiredoxin 1 as a driver of resistance to ATM inhibition. Redox Biol., 80, 103503 (2025). doi: 10.1016/j.redox.2025.103503
  77. Fan C., Yuan S., Zhang Y., Nie Y., Xiang L., Luo T., Xi Q., Zhang Y., Gu Z., Wang P., and Zhou H. Peroxiredoxin1 as a molecular chaperone that regulates glutathione S-transferase P1 activity and drives multidrug resistance in ovarian cancer cells. Biochem. Biophys. Rep., 37, 101639 (2024). doi: 10.1016/j.bbrep.2024.101639
  78. Hao Y. Y., Xiao W. Q., Zhang H. N., Yu N. N., Park G., Han Y. H., Kwon T., and Sun H. N. Peroxiredoxin 1 modulates oxidative stress resistance and cell apoptosis through stemness in liver cancer under non-thermal plasma treatment. Biochem. Biophys. Res. Comm., 738, 150522 (2024). doi: 10.1016/j.bbrc.2024.150522
  79. Yu Y., Chen D., Wu T., Lin H., Ni L., Sui H., Xiao S., Wang C., Jiang S., Pan H., Li S., Jin X., Xie C., and Cui R. Dihydroartemisinin enhances the anti-tumor activity of oxaliplatin in colorectal cancer cells by altering PRDX2–reactive oxygen species-mediated multiple signaling pathways. Phytomedicine, 98, 153932 (2022). doi: 10.1016/j.phymed.2022.153932
  80. Shi J., Zhou L., Huang H. S., Peng L., Xie N., Nice E., Fu L., Jiang C., and Huang C. Repurposing oxiconazole against colorectal cancer via PRDX2-mediated autophagy arrest. Int. J. Biol. Sci., 18 (9), 3747–3761 (2022). doi: 10.7150/ijbs.70679
  81. Zheng X., Wei J., Li W., Li X., Wang W., Guo J., and Fu Z. PRDX2 removal inhibits the cell cycle and autophagy in colorectal cancer cells. Aging (Albany NY), 12 (16), 16390–16409 (2020). doi: 10.18632/aging.103690
  82. Cerda M. B., Lloyd R., Batalla M., Giannoni F., Casal M., and Policastro L. Silencing peroxiredoxin-2 sensitizes human colorectal cancer cells to ionizing radiation and oxaliplatin. Cancer Lett., 388, 312–319 (2017). doi: 10.1016/j.canlet.2016.12.009
  83. Yan Y. and Gan B. Hyperoxidized PRDX3 as a specific ferroptosis marker. Life Metabolism, 2 (6), load042 (2023). doi: 10.1093/lifemeta/load042
  84. Rius-Perez S. p53 at the crossroad between mitochondrial reactive oxygen species and necroptosis. Free Rad. Biol. Med., 207, 183–193 (2023). doi: 10.1016/j.freeradbiomed.2023.07.022
  85. Myers C. R. Enhanced targeting of mitochondrial peroxide defense by the combined use of thiosemicarbazones and inhibitors of thioredoxin reductase. Free Rad. Biol. Med., 91, 81–92 (2016). doi: 10.1016/j.freeradbiomed.2015.12.008
  86. Guo X., Noguchi H., Ishii N., Homma T., Hamada T., Hiraki T., Zhang J., Matsuo K., Yokoyama S., IshibashiH., Fukushige T., Kanekura T., Fujii J., Uramoto H., Tanimoto A., and Yamada S. The association of peroxiredoxin 4 with the initiation and progression of hepatocellular carcinoma. Antioxidants & Redox Signaling, 30 (10), 1271–1284 (2019). doi: 10.1089/ars.2017.7426
  87. Chen X., Cao X., Xiao W., Li B., and Xue Q. PRDX5 as a novel binding partner in Nrf2-mediated NSCLC progression under oxidative stress. Aging (Albany NY), 12 (1), 122–137 (2020). doi: 10.18632/aging.102605
  88. Jo A., Bae J. H., Yoon Y. J., Chung T. H., Lee E. W., KimY. H., Joh H. M., and Chung J. W. Plasma-activated medium induces ferroptosis by depleting FSP1 in human lung cancer cells. Cell Death & Disease, 13 (3), 212 (2022). doi: 10.1038/s41419-022-04660-9
  89. Sun H. N., Guo X. Y., Xie D. P., Wang X. M., Ren C. X., Han Y. H., Yu N. N., Huang Y. L., and Kwon T. Knockdown of peroxiredoxin V increased the cytotoxicity of non-thermal plasma-treated culture medium to A549 cells. Aging (Albany NY), 14 (9), 4000–4013 (2022). doi: 10.18632/aging.204063
  90. Jin Y. Z., Gong Y. X., Liu Y., Xie D. P., Ren C. X., Lee S. J., Sun H. N., Kwon T., and Xu D. Y. Peroxiredoxin V silencing elevates susceptibility to doxorubicin-induced cell apoptosis via ROS-dependent mitochondrial dysfunction in AGS gastric cancer cells. Anticancer Res., 41 (4), 1831–1840 (2021). doi: 10.21873/anticanres.14949
  91. Lagal D. J., Lopez-Grueso M. J., Pedrajas J. R., Leto T. L., Barcena J. A., Requejo-Aguilar R., and Padilla C. A. Loss of PRDX6 aborts proliferative and migratory signaling in hepatocarcinoma cell lines. Antioxidants (Basel), 12 (6), 1153 (2023). doi: 10.3390/antiox12061153
  92. Chen J., Cao X., Qin X., Liu H., Chen S., Zhong S., and Li Y. Proteomic analysis of the molecular mechanism of curcumin/β-cyclodextrin polymer inclusion complex inhibiting HepG2 cells growth. J. Food Biochem., 44 (2), e13119 (2020). doi: 10.1111/jfbc.13119
  93. Chen C., Gong L., Liu X., Zhu T., Zhou W., Kong L., and Luo J. Identification of peroxiredoxin 6 as a direct target of withangulatin A by quantitative chemical proteomics in non-small cell lung cancer. Redox Biol., 46, 102130 (2021). doi: 10.1016/j.redox.2021.102130
  94. Fischer J., Eglinton T. W., Frizelle F. A., and HamptonM. B. Peroxiredoxins in colorectal cancer: predictive biomarkers of radiation response and therapeutic targets to increase radiation sensitivity? Antioxidants, 7 (10), 136 (2018). doi: 10.3390/antiox7100136
  95. Hong W. G., Kim J. Y., Cho J. H., Hwang S. G., Song J. Y., Lee E., Chang T. S., Um H. D., and Park J. K. AMRI-59 functions as a radiosensitizer via peroxiredoxin I-targeted ROS accumulation and apoptotic cell death induction. Oncotarget, 8 (69), 114050–114064 (2017). doi: 10.18632/oncotarget.23114
  96. Feng A. L., Han X., Meng X., Chen Z., Li Q., Shu W., Dai H., Zhu J., and Yang Z. PRDX2 plays an oncogenic role in esophageal squamous cell carcinoma via Wnt/β-catenin and AKT pathways. Clin. Translat. Oncol., 22 (10), 1838–1848 (2020). doi: 10.1007/s12094-020-02323-9
  97. Jeon H. J., Park Y. S., Cho D. H., Kim J. S., Kim E., ChaeH. Z., Chun S. Y., and Oh J. S. Peroxiredoxins are required for spindle assembly, chromosome organization, and polarization in mouse oocytes. Biochem. Biophys. Res. Comm., 489 (2), 193–199 (2017). doi: 10.1016/j.bbrc.2017.05.127
  98. Gillespie M. S., Ward C. M., and Davies C. C. DNA repair and therapeutic strategies in cancer stem cells. Cancers, 15 (6), 1897 (2023). doi: 10.3390/cancers15061897
  99. Konig D., Savic Prince S., and Rothschild S. I. Targeted therapy in advanced and metastatic non-small cell lung cancer. An update on treatment of the most important actionable oncogenic driver alterations. Cancers (Basel), 13 (4), 804 (2021). doi: 10.3390/cancers13040804
  100. Dahou H., Minati M. A., Jacquemin P., and Assi M. Genetic inactivation of peroxiredoxin-I impairs the growth of human pancreatic cancer cells. Antioxidants (Basel), 10 (4), 570 (2021). doi: 10.3390/antiox10040570
  101. Song C., Xiong G., Yang S., Wei X., Ye X., Huang W., and Zhang R. PRDX1 stimulates non-small-cell lung carcinoma to proliferate via the Wnt/β-catenin signaling. Panminerva Medica, 65, 37–42 (2023). doi: 10.23736/S0031-0808.20.03978-6
  102. Xu M., Xu J., Zhu D., Su R., Zhuang B., Xu R., Li L., Chen S., and Ling Y. Expression and prognostic roles of PRDXs gene family in hepatocellular carcinoma. J. Translat. Med., 19 (1), 126 (2021). doi: 10.1186/s12967-021-02792-8
  103. Wang W., Wei J., Zhang H., Zheng X., Zhou H., Luo Y., Yang J., Deng Q., Huang S., and Fu Z. PRDX2 promotes the proliferation of colorectal cancer cells by increasing the ubiquitinated degradation of p53. Cell Death Dis., 12 (6), 605 (2021). doi: 10.1038/s41419-021-03888-1
  104. Peng L., Xiong Y., Wang R., Xiang L., Zhou H., and Fu Z. The critical role of peroxiredoxin-2 in colon cancer stem cells. Aging (Albany NY), 13 (8), 11170–11187 (2021). doi: 10.18632/aging.202784
  105. Qu M., Li J., Hong Z., Jia F., He Y., and Yuan L. The role of human umbilical cord mesenchymal stem cells-derived exosomal microRNA-431-5p in survival and prognosis of colorectal cancer patients. Mutagenesis, 37 (2), 164–171 (2022). doi: 10.1093/mutage/geac007
  106. Yang X., Xiang X., Xu G., Zhou S., An T., and Huang Z. Silencing of peroxiredoxin 2 suppresses proliferation and Wnt/β-catenin pathway, and induces senescence in hepatocellular carcinoma. Oncol. Res., 32 (1), 213 (2023). doi: 10.32604/or.2023.030768
  107. Oaxaca-Camacho A. R., Ochoa-Mojica O. R., Aguilar-Lemarroy A., Jave-Suarez L. F., Munoz-Valle J. F., Padilla-Camberos E., Nunez-Hernandez J. A., Herrera-Rodriguez S. E., Martinez-Velazquez M., Carranza-Aranda A. S., Cruz-Ramos J. A., Gutierrez-Ortega A., and Hernandez-Gutierrez R. Serum analysis of women with early-stage breast cancer using a mini-array of tumorassociated antigens. Biosensors, 10 (10), 149 (2020). doi: 10.3390/bios10100149
  108. Mukherjee P., Kumar K., Babu B., Purkayastha J., and Chandna S. Alterations in the expression pattern of RBC membrane associated proteins (RMAPs) in whole body γirradiated Sprague Dawley rats. Int. J. Radiat. Biol., 99 (11), 1724–1737 (2023). doi: 10.1080/09553002.2023.2219726
  109. Zhao K., Zhao T., Yang R., Liu J., and Hu M. Peroxiredoxin 2 as a potential prognostic biomarker associated with angiogenesis in cervical squamous cell cancer. Oncol. Lett., 28 (1), 328 (2024). doi: 10.3892/ol.2024.14461
  110. Mizutani K., Guo X., Shioya A., Zhang J., Zheng J., Kurose N., Ishibashi H., Motono N., Uramoto H., and Yamada S. The impact of PRDX4 and the EGFR mutation status on cellular proliferation in lung adenocarcinoma. Int. J. Med. Sci., 16 (9), 1199–1206 (2019). doi: 10.7150/ijms.36071
  111. Cao X., Chen X. M., Xiao W. Z., Li B., Zhang B., Wu Q., and Xue Q. ROS-mediated hypomethylation of PRDX5 promotes STAT3 binding and activates the Nrf2 signaling pathway in NSCLC. Int. J. Mol. Med., 47 (2), 573–582 (2021). doi: 10.3892/ijmm.2020.4819
  112. Hishida S., Kawakami K., Fujita Y., Kato T., Takai M., Iinuma K., Nakane K., Tsuchiya T., Koie T., Miura Y., Ito M., and Mizutani K. Proteomic analysis of extracellular vesicles identified PI3K pathway as a potential therapeutic target for cabazitaxel-resistant prostate cancer. Prostate, 81 (9), 592–602 (2021). doi: 10.1002/pros.24138
  113. Xu J., Su Q., Gao M., Liang Q., Li J., and Chen X. Differential expression and effects of peroxiredoxin-6 on drug resistance and cancer stem cell-like properties in nonsmall cell lung cancer. Onco Targets Ther., 12, 10477–10486 (2019). doi: 10.2147/OTT.S211125
  114. Torres-Velarde J. M., Allen K. N., Salvador-Pascual A., Leija R. G., Luong D., Moreno-Santillan D. D., Ensminger D. C., and Vazquez-Medina J. P. Peroxiredoxin 6 suppresses ferroptosis in lung endothelial cells. Free Rad. Biol. Med., 218, 82–93 (2024). doi: 10.1016/j.freeradbiomed.2024.04.208
  115. Azmanova M. and Pitto-Barry A. Oxidative stress in cancer therapy: Friend or enemy? Chembiochem, 23, e202100641 (2022). doi: 10.1002/cbic.202100641
  116. Hao C. C., Luo J. N., Xu C. Y., Zhao X. Y., Zhong Z. B., Hu X. N., Jin X. M., and Ge X. TRIAP1 knockdown sensitizes non-small cell lung cancer to ionizing radiation by disrupting redox homeostasis. Thorac. Cancer, 11 (4), 1015–1025 (2020). doi: 10.1111/1759-7714.13358
  117. Ma R., Sun T., Wang X., Ren K., Min T., Xie X., Wang D., Li K., Zhang Y., Zhu K., Mo C., Dang C., Yang Y., and Zhang H. Chronic exposure to low-dose deltamethrin can lead to colon tissue injury through PRDX1 inactivation-induced mitochondrial oxidative stress injury and gut microbial dysbiosis. Ecotoxicol. Environ. Saf., 264, 115475 (2023). doi: 10.1016/j.ecoenv.2023.115475
  118. Chandimali N., Sun H. N., Kong L. Z., Zhen X., Liu R., Kwon T., and Lee D. S. Shikonin-induced apoptosis of colon cancer cells is reduced by Peroxiredoxin V expression. Anticancer Res., 39, 6115–6123 (2019). doi: 10.21873/anticanres.13819
  119. Mireștean C. C., Iancu R. I., and Iancu D. P. T. p53 modulates radiosensitivity in head and neck cancers — From classic to future horizons. Diagnostics, 12 (12), 3052 (2022). doi: 10.3390/diagnostics12123052
  120. Mehmandar-Oskuie A., Jahankhani K., Rostamlou A., Arabi S., Sadat Razavi Z., and Mardi A. Molecular landscape of LncRNAs in bladder cancer: From drug resistance to novel LncRNA-based therapeutic strategies. Biomed. Pharmacother., 165, 115242 (2023). doi: 10.1016/j.biopha.2023.115242
  121. Kang H., Kim B., Park J., Youn H., and Youn B. The Warburg effect on radioresistance: Survival beyond growth. Biochim. Biophys. Acta Rev. Cancer, 1878 (6), 188988 (2023). doi: 10.1016/j.bbcan.2023.188988
  122. Chargari C., Levy A., Paoletti X., Soria J. C., Massard C., Weichselbaum R. R., and Deutsch E. Methodological development of combination drug and radiotherapy in basic and clinical research. Clin. Cancer Res., 26 (18), 4723–4736 (2020). doi: 10.1158/1078-0432.CCR-19-4155
  123. Nakayasu E. S., Gritsenko M., Piehowski P. D., Gao Y., Orton D. J., Schepmoes A. A., Fillmore T. L., Frohnert B. I., Rewers M., Krischer J. P., Ansong C., Suchy-Dicey A. M., Evans-Molina C., Qian W. J., Webb-Robertson B. M., and Metz T. O. Tutorial: best practices and considerations for mass-spectrometry-based protein biomarker discovery and validation. Nat. Protoc., 16 (8), 3737–3760 (2021). doi: 10.1038/s41596-021-00566-6
  124. Hanahan D. Hallmarks of cancer: New dimensions. Cancer Discov., 12 (1), 31–46 (2022). doi: 10.1158/2159-8290.CD-21-1059
  125. Xu J., Yu B., Wang F., and Yang J. Xenograft and organoid models in developing precision medicine for gastric cancer (Review). Int. J. Oncol., 64 (4), 41 (2024). doi: 10.3892/ijo.2024.5629
  126. Sharapov M. G., Goncharov R. G., Parfenyuk S. B., and Glushkova O. V. Effect of Peroxiredoxin 6 on p53 transcription factor level. Biochemistry (Moscow), 87 (8), 839–849 (2022). doi: 10.1134/S0006297922080156
  127. Salovska B., Kondelova A., Pimkova K., Liblova Z., Pribyl M., Fabrik I., Bartek J., Vajrychova M., and Hodny Z. Peroxiredoxin 6 protects irradiated cells from oxidative stress and shapes their senescence-associated cytokine landscape. Redox Biol., 49, 102212 (2022). doi: 10.1016/j.redox.2021.102212
  128. Bian L., Zhang J., Wang M., Keep R. F., Xi G., and HuaY. Intracerebral hemorrhage-induced brain injury in rats: the role of extracellular peroxiredoxin 2. Transl. Stroke Res., 11 (2), 288–295 (2020). doi: 10.1007/s12975-019-00714-x
  129. Doughty A., Keane G., Wadley A. J., Mahoney B., Bueno A. A., and Coles S. J. Plasma concentrations of thioredoxin, thioredoxin reductase and peroxiredoxin-4 can identify high risk patients and predict outcome in patients with acute coronary syndrome: A clinical observation. Int. J. Cardiol., 403, 131888 (2024). doi: 10.1016/j.ijcard.2024.131888
  130. Tang B., Ni W., Zhou J., Ling Y., Niu D., Lu X., Chen T., Ramalingam M., and Hu J. Peroxiredoxin 6 secreted by Schwann-like cells protects neuron against ischemic stroke in rats via PTEN/PI3K/AKT pathway. Tissue Cell, 73, 101635 (2021). doi: 10.1016/j.tice.2021.101635
  131. Sharapov M. G., Glushkova O. V., Parfenyuk S. B., Gudkov S. V., Lunin S. M., and Novoselova E. G. The role of TLR4/NF-κB signaling in the radioprotective effects of exogenous Prdx6. Arch. Biochem. Biophys., 702, 108830 (2021). doi: 10.1016/j.abb.2021.108830
  132. Robinson M. W., Hutchinson A. T., Dalton J. P., and Donnelly S. Peroxiredoxin: a central player in immune modulation. Parasite Immunol., 32 (5), 305–313 (2010). doi: 10.1111/j.1365-3024.2010.01201.x
  133. Price D. R. G., Nisbet A. J., Frew D., Bartley Y., Oliver E. M., McLean K., Inglis N. F., Watson E., Corripio-Miyar Y., and McNeilly T. N. Characterisation of a niche-specific excretory-secretory peroxiredoxin from the parasitic nematode Teladorsagia circumcincta. Parasit. Vectors, 12 (1), 339 (2019). doi: 10.1186/s13071-019-3593-6
  134. Park J., Kim S., Jung H. Y., Bae E. H., Shin M., Park J. I., Choi S. Y., Yi S. J., and Kim K. Peroxiredoxin 1-Toll-like receptor 4-p65 axis inhibits receptor activator of nuclear factor kappa-B ligand-mediated osteoclast differentiation. iScience, 27 (12), 111455 (2024). doi: 10.1016/j.isci.2024.111455
  135. Kim Y. J., Lee W. S., Ip C., Chae H. Z., Park E. M., and Park Y. M. Prx1 suppresses radiation-induced c-Jun NH2-terminal kinase signaling in lung cancer cells through interaction with the glutathione S-transferase Pi/c-Jun NH2-terminal kinase complex. Cancer Res., 66 (14), 7136–7142 (2006). doi: 10.1158/0008-5472.CAN-05-4446
  136. Son Y. W., Cheon M. G., Kim Y., and Jang H. H. Prx2 links ROS homeostasis to stemness of cancer stem cells. Free Rad. Biol. Med., 134, 260–267 (2019). doi: 10.1016/j.freeradbiomed.2019.01.001
  137. Sabharwal S. S., Waypa G. B., Marks J. D., and Schumacker P. T. Peroxiredoxin-5 targeted to the mitochondrial intermembrane space attenuates hypoxia-induced reactive oxygen species signalling. Biochem. J., 456 (3), 337–346 (2023). doi: 10.1042/BJ20130740
  138. Zou S., Liu J., Sun Z., Feng X., Wang Z., Jin Y., and Yang Z. Discovery of hPRDX5-based peptide inhibitors blocking PD-1/PD-L1 interaction through in silico proteolysis and rational design. Cancer Chemother. Pharmacol., 85 (1), 185–193 (2020). doi: 10.1007/s00280-019-03995-z
  139. Pillay C. S., John N., Barry C. J., Mthethwa L. M. D. C., and Rohwer J. M. Atypical network topologies enhance the reductive capacity of pathogen thiol antioxidant defense networks. Redox Biol., 65, 102802 (2023). doi: 10.1016/j.redox.2023.102802
  140. Van Loenhout J., Freire Boullosa L., Quatannens D., De Waele J., Merlin C., Lambrechts H., Lau H.W., Hermans C., Lin A., Lardon F., Peeters M., Bogaerts A., Smits E., and Deben C. Auranofin and cold atmospheric plasma synergize to trigger distinct cell death mechanisms and immunogenic responses in glioblastoma. Cells, 10 (11), 2936 (2021). doi: 10.3390/cells10112936
  141. Egetemaier S. M., Chauvistre H., Varaljai R., Hua Y., Lueong S. S., Makhzami S., Srinivas N., Forster J., Ullrich V., Stupia S., Schroeder V., Scharfenberg S., Hoewner A., Shannan B., Siveke J., Baietti M. F., Leucci E., Marine J. C., Paschen A., Scheffler B., Engel D. R., Becker L. M., Nensa F., Koester J., Grunwald B. T., Poepsel S., Ninck S., Kaschani F., Schadendorf D., Becker J. C., Tasdogan A., Rambow F., and Roesch A. Redirecting resistance evolution in BRAFV600 melanoma by inhibition of the peroxiredoxin-thioredoxin system. bioRxiv, 2025-03 (2025). doi: 10.1101/2025.03.10.641595
  142. Yu P., Gu T., Rao Y., Liang W., Zhang X., Jiang H., Lu J., She J., Guo J., Yang W., Liu Y., Tu Y., Tang L., and Zhou X. A novel marine-derived anti-acute kidney injury agent targeting peroxiredoxin 1 and its nanodelivery strategy based on ADME optimization. Acta Pharm. Sin. B, 14 (7), 3232–3250 (2024). doi: 10.1016/j.apsb.2024.03.005
  143. Xu L., Cao Y., Xu Y., Li R., and Xu X. Redox-responsive polymeric nanoparticle for nucleic acid delivery and cancer therapy: Progress, opportunities, and challenges. Macromol. Biosci., 24 (3), 2300238 (2024). doi: 10.1002/mabi.202300238
  144. Ardini M., Bellelli A., Williams D. L., Di Leandro L., Giansanti F., Cimini A., Ippoliti R., and Angelucci F. Taking advantage of the morpheein behavior of peroxiredoxin in bionanotechnology. Bioconjug. Chem., 32 (1), 43–62 (2021). doi: 10.1021/acs.bioconjchem.0c00621

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».