Peroxiredoxins as Key Markers of Radioresistance and Potential Targets in Cancer Radiotherapy
- 作者: Karmanova E.E1, Parfenyuk S.B1, Glushkova O.V1, Burmistrov D.E2, Novoselov V.I1, Sharapov M.G1
-
隶属关系:
- Institute of Cell Biophysics, Russian Academy of Sciences
- A.M. Prokhorov General Physics Institute, Russian Academy of Sciences
- 期: 卷 70, 编号 6 (2025)
- 页面: 1193-1210
- 栏目: Medical biophysics
- URL: https://journals.rcsi.science/0006-3029/article/view/354282
- DOI: https://doi.org/10.31857/S0006302925060173
- ID: 354282
如何引用文章
详细
作者简介
E. Karmanova
Institute of Cell Biophysics, Russian Academy of SciencesPushchino, Russia
S. Parfenyuk
Institute of Cell Biophysics, Russian Academy of SciencesPushchino, Russia
O. Glushkova
Institute of Cell Biophysics, Russian Academy of SciencesPushchino, Russia
D. Burmistrov
A.M. Prokhorov General Physics Institute, Russian Academy of SciencesMoscow, Russia
V. Novoselov
Institute of Cell Biophysics, Russian Academy of SciencesPushchino, Russia
M. Sharapov
Institute of Cell Biophysics, Russian Academy of Sciences
Email: sharapov.mg@yandex.ru
Pushchino, Russia
参考
- Hannon G., Lesch M. L., and Gerber S. A. Harnessing the immunological effects of radiation to improve immunotherapies in cancer. Int. J. Mol. Sci., 24 (8), 7359 (2023). doi: 10.3390/ijms24087359
- Locquet M. A., Brahmi M., Blay J. Y., and Dutour A. Radiotherapy in bone sarcoma: the quest for better treatment option. BMC Cancer, 23 (1), 742 (2023). doi: 10.1186/s12885-023-11232-3
- Porrazzo A., Cassandri M., D’Alessandro A., Morciano P., Rota R., Marampon F., and Cenci G. DNA repair in tumor radioresistance: insights from fruit flies genetics. Cell. Oncol., 47 (3), 717–732 (2024). doi: 10.1007/s13402-023-00906-6
- Zhou T., Zhang L. Y., He J. Z., Miao Z. M., Li Y. Y., Zhang Y. M., Liu Z. W., Zhang S. Z., Chen Y., Zhou G. C., and Liu Y. Q. Mechanisms and perspective treatment of radioresistance in non-small cell lung cancer. Front. Immunol., 14, 1133899 (2023). doi: 10.3389/fimmu.2023.1133899
- Шахзадова А. О., Старинский В. В. и Лисичникова И. В. Состояние онкологической помощи населению России в 2022 году. Сибирский онкол. журн., 22 (5), 5 (2023). doi: 10.21294/1814-4861-2023-22-5-5-13
- Bray F., Laversanne M., Sung H., Ferlay J., Siegel R. L., Soerjomataram I., and Jemal A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 74 (3), 229–263 (2024). doi: 10.3322/caac.21834
- Papież M. A. and Krzyściak W. Biological therapies in the treatment of cancer —update and new directions. Int. J. Mol. Sci., 22 (21), 11694 (2021). doi: 10.3390/ijms222111694
- Arif M., Nawaz A. F., Mueen H., Rashid F., Hemeg H. A., and Rauf A. Nanotechnology-based radiation therapy to cure cancer and the challenges in its clinical applications. Heliyon, 9 (6), e17252 (2023). doi: 10.1016/j.heliyon.2023.e17252
- Sharapov M. G., Karmanova E. E., and Gudkov S. V. Mechanisms of cancer cell radioresistance: Modern trends and research prospects. Biophysics, 69, 1064–1088 (2024). doi: 10.1134/S0006350924701161
- Guan X., Ruan Y., Che X. and Feng W. Dual role of PRDX1 in redox-regulation and tumorigenesis: Past and future. Free Rad. Biol. Med., 210, 120–129 (2024). doi: 10.1016/j.freeradbiomed.2023.11.009
- Forshaw T. E., Holmila R., Nelson K. J., Lewis J. E., Kemp M. L., Tsang A. W., Poole L. B., Lowther W. T. and Furdui C. M. Peroxiredoxins in cancer and response to radiation therapies. Antioxidants (Basel), 8(1), 11 (2019). doi: 10.3390/antiox801001
- Sharapov M. G., Novoselov V. I., Penkov N. V., Fesenko E. E., Vedunova M. V., Bruskov V. I., and Gudkov S. V. Protective and adaptogenic role of peroxiredoxin 2 (Prx2) in neutralization of oxidative stress induced by ionizing radiation. Free Rad. Biol. Med., 134, 76–86 (2019). doi: 10.1016/j.freeradbiomed.2018.12.032
- Obrador E., Salvador R., Villaescusa J. I., Soriano J. M., Estrela J. M., and Montoro A. Radioprotection and radiomitigation: from the bench to clinical practice. Biomedicines, 8 (11), 461 (2020). doi: 10.3390/biomedicines8110461
- Nilsson R. and Liu N. A. Nuclear DNA damages generated by reactive oxygen molecules (ROS) under oxidative stress and their relevance to human cancers, including ionizing radiation-induced neoplasia part I: physical, chemical and molecular biology aspects. Radiat. Med. Protect., 1 (3), 140–152 (2020). doi: 10.1016/j.radmp.2020.09.002
- Zhang B., Wang Y. and Su Y. Peroxiredoxins, a novel target in cancer radiotherapy. Cancer Lett., 286, 154–160 (2009). doi: 10.1016/j.canlet.2009.04.043
- Bruskov V. I., Chernikov A. V., Ivanov V. E., Karmanova E. E., and Gudkov S. V. Formation of the reactive species of oxygen, nitrogen, and carbon dioxide in aqueous solutions under physical impacts. Phys. Wave Phenom., 28, 103–106 (2020). doi: 10.3103/S1541308X2002003X
- Sriramulu S., Thoidingjam S., Brown S. L., Siddiqui F., Movsas B. and Nyati S. Molecular targets that sensitize cancer to radiation killing: From the bench to the bedside. Biomed. Pharmacother., 158, 114126 (2023). doi: 10.1016/j.biopha.2022.114126
- Hao Y., Jiang H., Thapa P., Ding N., Alshahrani A., Fujii J., Toledano M. B., and Wei Q. Critical role of the sulfiredoxinperoxiredoxin IV axis in urethane-induced non-small cell lung cancer. Antioxidants (Basel), 12 (2), 367 (2023). doi: 10.3390/antiox12020367
- Boltman T., Meyer M., and Ekpo O. Diagnostic and therapeutic approaches for glioblastoma and neuroblastoma cancers using chlorotoxin nanoparticles. Cancers, 15 (13), 3388 (2023). doi: 10.3390/cancers15133388
- Byun H. K., Kim C., and Seong J. Carbon ion radiotherapy in the treatment of hepatocellular carcinoma. Clin. Mol. Hepatol., 29 (4), 945 (2023). doi: 10.3350/cmh.2023.0217
- Bradley J. D., Hu C., Komaki R. R, Masters G. A., Blumenschein G. R., Schild S. E., Bogart J. A., Forster K.M., Magliocco A. M., Kavadi V. S., Narayan S., Iyengar P., Robinson C. G., Wynn R. B., Koprowski C. D., Olson M. R., Meng J., Paulus R., Curran W. J. Jr., and Choy H. Long-term results of NRG oncology RTOG 0617: Standard- versus high-dose chemoradiotherapy with or without cetuximab for unresectable stage III non-small-cell lung cancer. J. Clin. Oncol., 38 (7), 706–714 (2020). doi: 10.1200/JCO.19.01162
- Chan Wah Hak C. M. L., Rullan A., Patin E. C., Pedersen M., Melcher A. A., and Harrington K. J. Enhancing anti-tumour innate immunity by targeting the DNA damage response and pattern recognition receptors in combination with radiotherapy. Front. Oncol., 12, 971959 (2022). doi: 10.3389/fonc.2022.971959
- Kovalchuk M. V., Deyev S. M., and Sergunova K. A. Targeted nuclear medicine. Achievements, challenges and prospects. Nanobiotechnol. Rep., 18 (4), 524–541 (2023). doi: 10.1134/S2635167623700416
- Basu R. and Kopchick J. J. GH and IGF1 in cancer therapy resistance. Endocrine-Related Cancer, 30 (9), e220414 (2023). doi: 10.1530/ERC-22-0414
- Guo S., Yao Y., Tang Y., Xin Z., Wu D., Ni C., Huang J., Wei Q., and Zhang T. Radiation-induced tumor immune microenvironments and potential targets for combination therapy. Signal. Transduct. Target. Ther., 8 (1), 205 (2023). doi: 10.1038/s41392-023-01462-z
- Carpov D., Buigă R., and Nagy V. M. DNA damage response and potential biomarkers of radiosensitivity in head and neck cancers: clinical implications. Rom. J. Morphol. Embryol., 64 (1), 5–13 (2023). doi: 10.47162/RJME.64.1.01
- Sminia P., Guipaud O., Viktorsson K., Ahire V., Baatout S., Boterberg T., Cizkova J., Dostal M., Fernandez-Palomo C., Filipova A., Francois A., Geiger M., Hunter A., Jassim H., Edin N. F. J., Jordan K., Koniarova I., Selvaraj V. K., Meade A. D., Milliat F., Montoro A., Politis C., Savu D., Semont A., Tichy A., Valek V., and Vogin G. Clinical radiobiology for radiation oncology. In: Radiobiology Textbook, Ed. by S. Baatout (Springer, Cham, 2023), pp. 237–309. doi: 10.1007/978-3-031-18810-7_5
- Thapa P., Jiang H., Ding N., Hao Y., Alshahrani A., and Wei Q. The role of peroxiredoxins in cancer development. Biology, 12 (5), 666 (2023). doi: 10.3390/biology12050666
- Liu Y., Wang P., Hu W., and Chen D. New insights into the roles of peroxiredoxins in cancer. Biomed. Pharmacother., 164, 114896 (2023). doi: 10.1016/j.biopha.2023.114896
- Moretton A., Kourtis S., Ganez Zapater A., Calabro C., Espinar Calvo M. L., Fontaine F., Darai E., Abad Cortel E., Block S., Pascual-Reguant L., Pardo-Lorente N., Ghose R., Vander Heiden M. G., Janic A., Muller A. C., Loizou J. I., and Sdelci S. A metabolic map of the DNA damage response identifies PRDX1 in the control of nuclear ROS scavenging and aspartate availability. Mol. Syst. Biol., 19 (7), e11267 (2023). doi: 10.15252/msb.202211267
- Ahmed W. and Lingner J. PRDX1 counteracts catastrophic telomeric cleavage events that are triggered by DNA repair activities post oxidative damage. Cell Rep., 33 (5), 108347 (2020). doi: 10.1016/j.celrep.2020.108347
- Ježek P. Pitfalls of mitochondrial redox signaling research. Antioxidants, 12, 1696 (2023). doi: 10.3390/antiox12091696
- Thapa P., Ding N., Hao Y., Alshahrani A., Jiang H. and Wei Q. Essential roles of peroxiredoxin IV in inflammation and cancer. Molecules, 27, 6513 (2022). doi: 10.3390/molecules27196513
- Liao J., Zhang Y., Yang J., Chen L., Zhang J. and Chen X. Peroxiredoxin 6 in stress orchestration and disease interplay. Antioxidants, 14, 379 (2025). doi: 10.3390/antiox14040379
- Averill-Bates D. Reactive oxygen species and cell signaling. Biochim. Biophys. Acta (BBA) – Mol. Cell Res., 1871 (2), 119573 (2023). doi: 10.1016/j.bbamcr.2023.119573
- Aramouni K., Assaf R., Shaito A., Fardoun M., Al-Asmakh M., Sahebkar A., and Eid A. H. Biochemical and cellular basis of oxidative stress: implications for disease onset. J. Cell Physiol, 238 (9), 1951–1963 (2023). doi: 10.1002/jcp.31071
- Skoko J. J., Cao J., Gaboriau D., Attar M., Asan A., Hong L., Paulsen C. E., Ma H., Liu Y., Wu H., Harkness T., Furdui C. M., Manevich Y., Morrison C. G., Brown E. T., Normolle D., Spies M., Spies M. A., Carroll K., and Neumann C. A. Redox regulation of RAD51 Cys319 and homologous recombination by peroxiredoxin 1. Redox Biol., 56, 102443 (2022). doi: 10.1016/j.redox.2022.102443
- Sharapov M. G., Novoselov V. I., Fesenko E. E., BruskovV. I., and Gudkov S. V. The role of peroxiredoxin 6 in neutralization of X-ray mediated oxidative stress: effects on gene expression, preservation of radiosensitive tissues and postradiation survival of animals. Free Rad. Res., 51(2), 148–166 (2017). doi: 10.1080/10715762.2017.1289377
- Villar S. F., Ferrer-Sueta G., and Denicola A. The multifaceted nature of peroxiredoxins in chemical biology. Curr. Opin. Chem. Biol., 76, 102355 (2023). doi: 10.1016/j.cbpa.2023.102355
- Richardson R. B. and Mailloux R. J. Mitochondria need their sleep: redox, bioenergetics, and temperature regulation of circadian rhythms and the role of cysteine-mediated redox signaling, uncoupling proteins, and substrate cycles. Antioxidants, 12 (3), 674 (2023). doi: 10.3390/antiox12030674
- Sies H., Belousov V. V., Chandel N. S., Davies M. J., Jones D. P., Mann G. E., Murphy M. P., Yamamoto M., and Winterbourn C. Defining roles of specific reactive oxygen species (ROS) in cell biology and physiology. Nat. Rev. Mol. Cell Biol., 23, 499–515 (2022). doi: 10.1038/s41580-022-00456-z
- Zhang H., Mao Z., Kang Y., Zhang W., Mei L., and Ji X. Redox regulation and its emerging roles in cancer treatment. Coordinat. Chem. Rev., 475, 214897 (2023). doi: 10.1016/j.ccr.2022.214897
- Jin P., Li L., Nice E. C., and Huang C. Nanomedicinebased modulation of redox status for cancer therapy. Austral. J. Chem., 76 (8), 337–350 (2023).
- Sharma V., Bandyopadhyay S., Sikka K., Kakkar A., Hariprasad G., and Singh S. B. Label-free proteomics of oral mucosa tissue to identify potential biomarkers that can flag predilection of precancerous lesions to oral cell carcinoma: a preliminary study. Disease Markers, 2023, 1329061 (2023). doi: 10.1155/2023/1329061
- Checker R., Bhilwade H. N., Nandha S. R., Patwardhan R. S., Sharma D., and Sandur S. K. Withaferin A, a steroidal lactone, selectively protects normal lymphocytes against ionizing radiation-induced apoptosis and genotoxicity via activation of the ERK/Nrf-2/HO-1 axis. Toxicol. Appl. Pharmacol., 461, 116389 (2023). doi: 10.1016/j.taap.2023.116389
- Balasubramanian P., Vijayarangam V., Palaniyandi T., Ravi M., Natarajan S., Viswanathan S., Baskar G., Rahaman M. A., Wahab A., and Surendran H. Implications and progression of peroxiredoxin 2 (PRDX2) in various human diseases. Pathology – Research and Practice, 254, 155080 (2024). doi: 10.1016/j.prp.2023.155080
- Ding N., Jiang H., Thapa P., Hao Y., Alshahrani A., Allison D., Izumi T., Rangnekar V. M., Liu X., and Wei Q. Peroxiredoxin IV plays a critical role in cancer cell growth and radioresistance through the activation of the Akt/GSK3 signaling pathways. J. Biol. Chem., 298 (7), 102123 (2022). doi: 10.1016/j.jbc.2022.102123
- Szeliga M. and Rola R. Conoidin A, a covalent inhibitor of peroxiredoxin 2, reduces growth of glioblastoma cells by triggering ROS production. Cells, 12, 1934 (2023). doi: 10.3390/cells12151934
- Wu M., Deng C., Lo T. H., Chan K. Y., Li X., and Wong C. M. Peroxiredoxin, senescence, and cancer. Cells, 11 (11), 1772 (2022). doi: 10.3390/cells11111772
- Cunha A., Silva P. M. A., Sarmento B., and Queiros O. Targeting glucose metabolism in cancer cells as an approach to overcoming drug resistance. Pharmaceutics, 15, 2610 (2023). doi: 10.3390/pharmaceutics15112610
- Ding Y., Ye B., Sun Z., Mao Z., and Wang W. Reactive Oxygen Species‐Mediated Pyroptosis with the Help of Nanotechnology: Prospects for Cancer Therapy. Adv. NanoBiomed Res., 3 (1), 2200077 (2023). doi: 10.1002/anbr.202200077
- Nguyen N. T. T., Yamada T., and Yamada K. H. Peptidebased agents for cancer treatment: current applications and future directions. Int. J. Mol. Sci., 24, 12931 (2023). doi: 10.3390/ijms241612931
- Xie N., Shen G., Gao W., Huang Z., Huang C., and Fu L. Neoantigens: promising targets for cancer therapy. Signal Transduct. Target. Ther., 8, 9 (2023). doi: 10.1038/s41392-022-01270-x
- Su S. and Kang P. Recent advances in nanocarrier-assisted therapeutics delivery systems. Pharmaceutics, 12, 837 (2020). doi: 10.3390/pharmaceutics12090837
- Fujita H., Ohta S., Nakamura N., Somiya M. and HorieM. Progress of endogenous and exogenous nanoparticles for cancer therapy and diagnostics. Genes (Basel), 14 (2), 259 (2023). doi: 10.3390/genes14020259
- Li J., Wu T., Li S., Chen X., Deng Z. and Huang Y. Nanoparticles for cancer therapy: a review of influencing factors and evaluation methods for biosafety. Clin. Translat. Oncol., 25 (7), 2043–2055 (2023). doi: 10.1007/s12094-023-03117-5
- Sun L., Liu H., Ye Y., Lei Y., Islam R., Tan S., Tong R., Miao Y. B., and Cai L. Smart nanoparticles for cancer therapy. Signal Transduct. Target. Ther., 8(1), 418 (2023). doi: 10.1038/s41392-023-01642-x
- Tan G. R., Hsu C. S., and Zhang Y. pH-Responsive hybrid nanoparticles for imaging spatiotemporal pH changes in biofilm-dentin microenvironments. ACS Appl. Mater. Interfaces, 13, 46247–46259 (2021). doi: 10.1021/acsami.1c11162
- Lee Y. H., Tai D., Yip C., Choo S. P., and Chew V. Combinational immunotherapy for hepatocellular carcinoma: radiotherapy, immune checkpoint blockade and beyond. Front. Immunol., 11, 568759 (2020). doi: 10.3389/fimmu.2020.568759
- An L., Li M., and Jia Q. Mechanisms of radiotherapy resistance and radiosensitization strategies for esophageal squamous cell carcinoma. Mol. Cancer, 22 (1), 140 (2023). doi: 10.1186/s12943-023-01839-2
- Zheng D., Li J., Yan H., Zhang G., Li W., Chu E., and Wei N. Emerging roles of Aurora-A kinase in cancer therapy resistance. Acta Pharmaceut. Sinica B, 13 (7), 2826–2843 (2023). doi: 10.1016/j.apsb.2023.03.013
- Wang K., Michelakos T., Wang B., Shang Z., DeLeo A. B., Duan Z., Hornicek F. J., Schwab J. H., and Wang X. Targeting cancer stem cells by disulfiram and copper sensitizes radioresistant chondrosarcoma to radiation. Cancer Lett., 505, 37–48 (2021). doi: 10.1016/j.canlet.2021.02.002
- He L., Yu X., and Li W. Recent progress and trends in Xrayinduced photodynamic therapy with low radiation doses. ACS Nano, 16 (12), 19691–19721 (2022). doi: 10.1021/acsnano.2c07286
- Pan Y., Zhu Y., Xu C., Pan C., Shi Y., Zou J., Li Y., Hu X., Zhou B., Zhao C., Gao Q., Zhang J., Wu A., Chen X., and Li J. Biomimetic yolk-shell nanocatalysts for activatable dual-modal-image-guided triple-augmented chemodynamic therapy of cancer. ACS Nano, 16 (11), 19038–19052 (2022). doi: 10.1021/acsnano.2c08077
- Jomova K., Raptova R., Alomar S. Y., Alwasel S. H., Nepovimova E., Kuca K., and Valko M. Reactive oxygen species, toxicity, oxidative stress, and antioxidants: chronic diseases and aging. Arch. Toxicol., 97 (10), 2499–2574 (2023). doi: 10.1007/s00204-023-03562-9
- Caverzan M. D., Beauge L., Chesta C. A., Palacios R. E., and Ibarra L. E. Photodynamic therapy of glioblastoma cells using doped conjugated polymer nanoparticles: an in vitro comparative study based on redox status. J. Photochem. Photobiol. B, 212, 112045 (2020). doi: 10.1016/j.jphotobiol.2020.112045
- Yu X., Li Z., Zhang Y., Xu M., Che Y., Tian X., Wang R., Zou K., and Zou L. β-Elemene inhibits radiation- and hypoxia-induced macrophage infiltration via Prx-1/NFκB/HIF-1α signaling pathway. OncoTargets and Therapy, 12, 4203–4211 (2019). doi: 10.2147/OTT.S196910
- Hao J., Song Z., Su J., Li L., Zou L., and Zou K. The PRX-1/TLR4 axis promotes hypoxia-induced radiotherapy resistance in non-small cell lung cancer by targeting the NF-κB/p65 pathway. Cell. Signal., 110, 110806 (2023). doi: 10.1016/j.cellsig.2023.110806
- Sun H. N., Liu Y., Wang J. N., Wang C., Liu R., Kong L. Z., Zhen X., Chandimali N., Cui Y. D., Kim S.U., Lee D. S., Yu D. Y., Kim J. S., Jeong D. K., Kwon T., and Han Y. H. Protective role of peroxiredoxin I in heat-killed Staphylococcus aureus-infected mice. In Vivo, 33 (3), 749–755 (2019). doi: 10.21873/invivo.11535
- Li J., Sun Y., Zhao X., Ma Y., Xie Y., Liu S., Hui B., Shi X., Sun X., and Zhang X. Radiation induces IRAK1 expression to promote radioresistance by suppressing autophagic cell death via decreasing the ubiquitination of PRDX1 in glioma cells. Cell Death & Disease, 14 (4), 259 (2023). doi: 10.1038/s41419-023-05732-0
- Klopotowska M., Bajor M., Graczyk-Jarzynka A., Kraft A., Pilch Z., Zhylko A., Firczuk M., Baranowska I., Lazniewski M., Plewczynski D., Goral A., Soroczynska K., Domagala J., Marhelava K., Slusarczyk A., Retecki K., Ramji K., Krawczyk M., Temples M. N., Sharma B., Lachota M., Netskar H., Malmberg K. J., Zagozdzon R., and Winiarska M. PRDX-1 supports the survival and antitumor activity of primary and CAR-modified NK cells under oxidative stress. Cancer Immunol. Res., 10 (2), 228–244 (2022). doi: 10.1158/2326-6066.CIR-20-1023
- Attaran S., Skoko J. J., Hopkins B. L., Wright M. K., Wood L. E., Asan A., Woo H. A., Feinberg A., and Neumann C. A. Peroxiredoxin-1 Tyr194 phosphorylation regulates LOX-dependent extracellular matrix remodelling in breast cancer. Brit. J. Cancer, 125 (8), 1146–1157 (2021). doi: 10.1038/s41416-021-01510-x
- Dasari C., Reddy K. R. K., Natani S., Murthy T. R. L., Bhukya S., and Ummanni R. Tumor protein D52 (isoform 3) interacts with and promotes peroxidase activity of peroxiredoxin 1 in prostate cancer cells implicated in cell growth and migration. Biochim. Biophys. Acta (Mol. Cell Res.), 1866 (8), 1298–1309 (2019). doi: 10.1016/j.bbamcr.2019.04.007
- Feng T., Zhao R., Sun F., Lu Q., Wang X., Hu J., Wang S., Gao L., Zhou Q., and Xiong X. TXNDC9 regulates oxidative stress-induced androgen receptor signaling to promote prostate cancer progression. Oncogene, 39, 356–367 (2020). doi: 10.1038/s41388-019-0991-3
- Ali R., Alhaj Sulaiman A., Memon B., Pradhan S., Algethami M., Aouida M., McKay G., Madhusudan S., Abdelalim E. M., and Ramotar D. Altered regulation of the glucose transporter GLUT3 in PRDX1 null cells causes hypersensitivity to arsenite. Cells, 12 (23), 2682 (2023). doi: 10.3390/cells12232682
- Li H., Furusawa T., Cavero R., Xiao Y., Chari R., Wu X., Sun D., Hartmann O., Dhall A., Holewinski R., Andresson T., Karim B., Villamor-Paya M., Gallardo D., Day C. P., Pal L. R., Nair N. U., Ruppin E., Aladjem M. I., Pommier Y., Diefenbacher M. E., Lim J.M., Levine R. L., Stracker T. H., and Weyemi U. Metabolic dependency mapping identifies peroxiredoxin 1 as a driver of resistance to ATM inhibition. Redox Biol., 80, 103503 (2025). doi: 10.1016/j.redox.2025.103503
- Fan C., Yuan S., Zhang Y., Nie Y., Xiang L., Luo T., Xi Q., Zhang Y., Gu Z., Wang P., and Zhou H. Peroxiredoxin1 as a molecular chaperone that regulates glutathione S-transferase P1 activity and drives multidrug resistance in ovarian cancer cells. Biochem. Biophys. Rep., 37, 101639 (2024). doi: 10.1016/j.bbrep.2024.101639
- Hao Y. Y., Xiao W. Q., Zhang H. N., Yu N. N., Park G., Han Y. H., Kwon T., and Sun H. N. Peroxiredoxin 1 modulates oxidative stress resistance and cell apoptosis through stemness in liver cancer under non-thermal plasma treatment. Biochem. Biophys. Res. Comm., 738, 150522 (2024). doi: 10.1016/j.bbrc.2024.150522
- Yu Y., Chen D., Wu T., Lin H., Ni L., Sui H., Xiao S., Wang C., Jiang S., Pan H., Li S., Jin X., Xie C., and Cui R. Dihydroartemisinin enhances the anti-tumor activity of oxaliplatin in colorectal cancer cells by altering PRDX2–reactive oxygen species-mediated multiple signaling pathways. Phytomedicine, 98, 153932 (2022). doi: 10.1016/j.phymed.2022.153932
- Shi J., Zhou L., Huang H. S., Peng L., Xie N., Nice E., Fu L., Jiang C., and Huang C. Repurposing oxiconazole against colorectal cancer via PRDX2-mediated autophagy arrest. Int. J. Biol. Sci., 18 (9), 3747–3761 (2022). doi: 10.7150/ijbs.70679
- Zheng X., Wei J., Li W., Li X., Wang W., Guo J., and Fu Z. PRDX2 removal inhibits the cell cycle and autophagy in colorectal cancer cells. Aging (Albany NY), 12 (16), 16390–16409 (2020). doi: 10.18632/aging.103690
- Cerda M. B., Lloyd R., Batalla M., Giannoni F., Casal M., and Policastro L. Silencing peroxiredoxin-2 sensitizes human colorectal cancer cells to ionizing radiation and oxaliplatin. Cancer Lett., 388, 312–319 (2017). doi: 10.1016/j.canlet.2016.12.009
- Yan Y. and Gan B. Hyperoxidized PRDX3 as a specific ferroptosis marker. Life Metabolism, 2 (6), load042 (2023). doi: 10.1093/lifemeta/load042
- Rius-Perez S. p53 at the crossroad between mitochondrial reactive oxygen species and necroptosis. Free Rad. Biol. Med., 207, 183–193 (2023). doi: 10.1016/j.freeradbiomed.2023.07.022
- Myers C. R. Enhanced targeting of mitochondrial peroxide defense by the combined use of thiosemicarbazones and inhibitors of thioredoxin reductase. Free Rad. Biol. Med., 91, 81–92 (2016). doi: 10.1016/j.freeradbiomed.2015.12.008
- Guo X., Noguchi H., Ishii N., Homma T., Hamada T., Hiraki T., Zhang J., Matsuo K., Yokoyama S., IshibashiH., Fukushige T., Kanekura T., Fujii J., Uramoto H., Tanimoto A., and Yamada S. The association of peroxiredoxin 4 with the initiation and progression of hepatocellular carcinoma. Antioxidants & Redox Signaling, 30 (10), 1271–1284 (2019). doi: 10.1089/ars.2017.7426
- Chen X., Cao X., Xiao W., Li B., and Xue Q. PRDX5 as a novel binding partner in Nrf2-mediated NSCLC progression under oxidative stress. Aging (Albany NY), 12 (1), 122–137 (2020). doi: 10.18632/aging.102605
- Jo A., Bae J. H., Yoon Y. J., Chung T. H., Lee E. W., KimY. H., Joh H. M., and Chung J. W. Plasma-activated medium induces ferroptosis by depleting FSP1 in human lung cancer cells. Cell Death & Disease, 13 (3), 212 (2022). doi: 10.1038/s41419-022-04660-9
- Sun H. N., Guo X. Y., Xie D. P., Wang X. M., Ren C. X., Han Y. H., Yu N. N., Huang Y. L., and Kwon T. Knockdown of peroxiredoxin V increased the cytotoxicity of non-thermal plasma-treated culture medium to A549 cells. Aging (Albany NY), 14 (9), 4000–4013 (2022). doi: 10.18632/aging.204063
- Jin Y. Z., Gong Y. X., Liu Y., Xie D. P., Ren C. X., Lee S. J., Sun H. N., Kwon T., and Xu D. Y. Peroxiredoxin V silencing elevates susceptibility to doxorubicin-induced cell apoptosis via ROS-dependent mitochondrial dysfunction in AGS gastric cancer cells. Anticancer Res., 41 (4), 1831–1840 (2021). doi: 10.21873/anticanres.14949
- Lagal D. J., Lopez-Grueso M. J., Pedrajas J. R., Leto T. L., Barcena J. A., Requejo-Aguilar R., and Padilla C. A. Loss of PRDX6 aborts proliferative and migratory signaling in hepatocarcinoma cell lines. Antioxidants (Basel), 12 (6), 1153 (2023). doi: 10.3390/antiox12061153
- Chen J., Cao X., Qin X., Liu H., Chen S., Zhong S., and Li Y. Proteomic analysis of the molecular mechanism of curcumin/β-cyclodextrin polymer inclusion complex inhibiting HepG2 cells growth. J. Food Biochem., 44 (2), e13119 (2020). doi: 10.1111/jfbc.13119
- Chen C., Gong L., Liu X., Zhu T., Zhou W., Kong L., and Luo J. Identification of peroxiredoxin 6 as a direct target of withangulatin A by quantitative chemical proteomics in non-small cell lung cancer. Redox Biol., 46, 102130 (2021). doi: 10.1016/j.redox.2021.102130
- Fischer J., Eglinton T. W., Frizelle F. A., and HamptonM. B. Peroxiredoxins in colorectal cancer: predictive biomarkers of radiation response and therapeutic targets to increase radiation sensitivity? Antioxidants, 7 (10), 136 (2018). doi: 10.3390/antiox7100136
- Hong W. G., Kim J. Y., Cho J. H., Hwang S. G., Song J. Y., Lee E., Chang T. S., Um H. D., and Park J. K. AMRI-59 functions as a radiosensitizer via peroxiredoxin I-targeted ROS accumulation and apoptotic cell death induction. Oncotarget, 8 (69), 114050–114064 (2017). doi: 10.18632/oncotarget.23114
- Feng A. L., Han X., Meng X., Chen Z., Li Q., Shu W., Dai H., Zhu J., and Yang Z. PRDX2 plays an oncogenic role in esophageal squamous cell carcinoma via Wnt/β-catenin and AKT pathways. Clin. Translat. Oncol., 22 (10), 1838–1848 (2020). doi: 10.1007/s12094-020-02323-9
- Jeon H. J., Park Y. S., Cho D. H., Kim J. S., Kim E., ChaeH. Z., Chun S. Y., and Oh J. S. Peroxiredoxins are required for spindle assembly, chromosome organization, and polarization in mouse oocytes. Biochem. Biophys. Res. Comm., 489 (2), 193–199 (2017). doi: 10.1016/j.bbrc.2017.05.127
- Gillespie M. S., Ward C. M., and Davies C. C. DNA repair and therapeutic strategies in cancer stem cells. Cancers, 15 (6), 1897 (2023). doi: 10.3390/cancers15061897
- Konig D., Savic Prince S., and Rothschild S. I. Targeted therapy in advanced and metastatic non-small cell lung cancer. An update on treatment of the most important actionable oncogenic driver alterations. Cancers (Basel), 13 (4), 804 (2021). doi: 10.3390/cancers13040804
- Dahou H., Minati M. A., Jacquemin P., and Assi M. Genetic inactivation of peroxiredoxin-I impairs the growth of human pancreatic cancer cells. Antioxidants (Basel), 10 (4), 570 (2021). doi: 10.3390/antiox10040570
- Song C., Xiong G., Yang S., Wei X., Ye X., Huang W., and Zhang R. PRDX1 stimulates non-small-cell lung carcinoma to proliferate via the Wnt/β-catenin signaling. Panminerva Medica, 65, 37–42 (2023). doi: 10.23736/S0031-0808.20.03978-6
- Xu M., Xu J., Zhu D., Su R., Zhuang B., Xu R., Li L., Chen S., and Ling Y. Expression and prognostic roles of PRDXs gene family in hepatocellular carcinoma. J. Translat. Med., 19 (1), 126 (2021). doi: 10.1186/s12967-021-02792-8
- Wang W., Wei J., Zhang H., Zheng X., Zhou H., Luo Y., Yang J., Deng Q., Huang S., and Fu Z. PRDX2 promotes the proliferation of colorectal cancer cells by increasing the ubiquitinated degradation of p53. Cell Death Dis., 12 (6), 605 (2021). doi: 10.1038/s41419-021-03888-1
- Peng L., Xiong Y., Wang R., Xiang L., Zhou H., and Fu Z. The critical role of peroxiredoxin-2 in colon cancer stem cells. Aging (Albany NY), 13 (8), 11170–11187 (2021). doi: 10.18632/aging.202784
- Qu M., Li J., Hong Z., Jia F., He Y., and Yuan L. The role of human umbilical cord mesenchymal stem cells-derived exosomal microRNA-431-5p in survival and prognosis of colorectal cancer patients. Mutagenesis, 37 (2), 164–171 (2022). doi: 10.1093/mutage/geac007
- Yang X., Xiang X., Xu G., Zhou S., An T., and Huang Z. Silencing of peroxiredoxin 2 suppresses proliferation and Wnt/β-catenin pathway, and induces senescence in hepatocellular carcinoma. Oncol. Res., 32 (1), 213 (2023). doi: 10.32604/or.2023.030768
- Oaxaca-Camacho A. R., Ochoa-Mojica O. R., Aguilar-Lemarroy A., Jave-Suarez L. F., Munoz-Valle J. F., Padilla-Camberos E., Nunez-Hernandez J. A., Herrera-Rodriguez S. E., Martinez-Velazquez M., Carranza-Aranda A. S., Cruz-Ramos J. A., Gutierrez-Ortega A., and Hernandez-Gutierrez R. Serum analysis of women with early-stage breast cancer using a mini-array of tumorassociated antigens. Biosensors, 10 (10), 149 (2020). doi: 10.3390/bios10100149
- Mukherjee P., Kumar K., Babu B., Purkayastha J., and Chandna S. Alterations in the expression pattern of RBC membrane associated proteins (RMAPs) in whole body γirradiated Sprague Dawley rats. Int. J. Radiat. Biol., 99 (11), 1724–1737 (2023). doi: 10.1080/09553002.2023.2219726
- Zhao K., Zhao T., Yang R., Liu J., and Hu M. Peroxiredoxin 2 as a potential prognostic biomarker associated with angiogenesis in cervical squamous cell cancer. Oncol. Lett., 28 (1), 328 (2024). doi: 10.3892/ol.2024.14461
- Mizutani K., Guo X., Shioya A., Zhang J., Zheng J., Kurose N., Ishibashi H., Motono N., Uramoto H., and Yamada S. The impact of PRDX4 and the EGFR mutation status on cellular proliferation in lung adenocarcinoma. Int. J. Med. Sci., 16 (9), 1199–1206 (2019). doi: 10.7150/ijms.36071
- Cao X., Chen X. M., Xiao W. Z., Li B., Zhang B., Wu Q., and Xue Q. ROS-mediated hypomethylation of PRDX5 promotes STAT3 binding and activates the Nrf2 signaling pathway in NSCLC. Int. J. Mol. Med., 47 (2), 573–582 (2021). doi: 10.3892/ijmm.2020.4819
- Hishida S., Kawakami K., Fujita Y., Kato T., Takai M., Iinuma K., Nakane K., Tsuchiya T., Koie T., Miura Y., Ito M., and Mizutani K. Proteomic analysis of extracellular vesicles identified PI3K pathway as a potential therapeutic target for cabazitaxel-resistant prostate cancer. Prostate, 81 (9), 592–602 (2021). doi: 10.1002/pros.24138
- Xu J., Su Q., Gao M., Liang Q., Li J., and Chen X. Differential expression and effects of peroxiredoxin-6 on drug resistance and cancer stem cell-like properties in nonsmall cell lung cancer. Onco Targets Ther., 12, 10477–10486 (2019). doi: 10.2147/OTT.S211125
- Torres-Velarde J. M., Allen K. N., Salvador-Pascual A., Leija R. G., Luong D., Moreno-Santillan D. D., Ensminger D. C., and Vazquez-Medina J. P. Peroxiredoxin 6 suppresses ferroptosis in lung endothelial cells. Free Rad. Biol. Med., 218, 82–93 (2024). doi: 10.1016/j.freeradbiomed.2024.04.208
- Azmanova M. and Pitto-Barry A. Oxidative stress in cancer therapy: Friend or enemy? Chembiochem, 23, e202100641 (2022). doi: 10.1002/cbic.202100641
- Hao C. C., Luo J. N., Xu C. Y., Zhao X. Y., Zhong Z. B., Hu X. N., Jin X. M., and Ge X. TRIAP1 knockdown sensitizes non-small cell lung cancer to ionizing radiation by disrupting redox homeostasis. Thorac. Cancer, 11 (4), 1015–1025 (2020). doi: 10.1111/1759-7714.13358
- Ma R., Sun T., Wang X., Ren K., Min T., Xie X., Wang D., Li K., Zhang Y., Zhu K., Mo C., Dang C., Yang Y., and Zhang H. Chronic exposure to low-dose deltamethrin can lead to colon tissue injury through PRDX1 inactivation-induced mitochondrial oxidative stress injury and gut microbial dysbiosis. Ecotoxicol. Environ. Saf., 264, 115475 (2023). doi: 10.1016/j.ecoenv.2023.115475
- Chandimali N., Sun H. N., Kong L. Z., Zhen X., Liu R., Kwon T., and Lee D. S. Shikonin-induced apoptosis of colon cancer cells is reduced by Peroxiredoxin V expression. Anticancer Res., 39, 6115–6123 (2019). doi: 10.21873/anticanres.13819
- Mireștean C. C., Iancu R. I., and Iancu D. P. T. p53 modulates radiosensitivity in head and neck cancers — From classic to future horizons. Diagnostics, 12 (12), 3052 (2022). doi: 10.3390/diagnostics12123052
- Mehmandar-Oskuie A., Jahankhani K., Rostamlou A., Arabi S., Sadat Razavi Z., and Mardi A. Molecular landscape of LncRNAs in bladder cancer: From drug resistance to novel LncRNA-based therapeutic strategies. Biomed. Pharmacother., 165, 115242 (2023). doi: 10.1016/j.biopha.2023.115242
- Kang H., Kim B., Park J., Youn H., and Youn B. The Warburg effect on radioresistance: Survival beyond growth. Biochim. Biophys. Acta Rev. Cancer, 1878 (6), 188988 (2023). doi: 10.1016/j.bbcan.2023.188988
- Chargari C., Levy A., Paoletti X., Soria J. C., Massard C., Weichselbaum R. R., and Deutsch E. Methodological development of combination drug and radiotherapy in basic and clinical research. Clin. Cancer Res., 26 (18), 4723–4736 (2020). doi: 10.1158/1078-0432.CCR-19-4155
- Nakayasu E. S., Gritsenko M., Piehowski P. D., Gao Y., Orton D. J., Schepmoes A. A., Fillmore T. L., Frohnert B. I., Rewers M., Krischer J. P., Ansong C., Suchy-Dicey A. M., Evans-Molina C., Qian W. J., Webb-Robertson B. M., and Metz T. O. Tutorial: best practices and considerations for mass-spectrometry-based protein biomarker discovery and validation. Nat. Protoc., 16 (8), 3737–3760 (2021). doi: 10.1038/s41596-021-00566-6
- Hanahan D. Hallmarks of cancer: New dimensions. Cancer Discov., 12 (1), 31–46 (2022). doi: 10.1158/2159-8290.CD-21-1059
- Xu J., Yu B., Wang F., and Yang J. Xenograft and organoid models in developing precision medicine for gastric cancer (Review). Int. J. Oncol., 64 (4), 41 (2024). doi: 10.3892/ijo.2024.5629
- Sharapov M. G., Goncharov R. G., Parfenyuk S. B., and Glushkova O. V. Effect of Peroxiredoxin 6 on p53 transcription factor level. Biochemistry (Moscow), 87 (8), 839–849 (2022). doi: 10.1134/S0006297922080156
- Salovska B., Kondelova A., Pimkova K., Liblova Z., Pribyl M., Fabrik I., Bartek J., Vajrychova M., and Hodny Z. Peroxiredoxin 6 protects irradiated cells from oxidative stress and shapes their senescence-associated cytokine landscape. Redox Biol., 49, 102212 (2022). doi: 10.1016/j.redox.2021.102212
- Bian L., Zhang J., Wang M., Keep R. F., Xi G., and HuaY. Intracerebral hemorrhage-induced brain injury in rats: the role of extracellular peroxiredoxin 2. Transl. Stroke Res., 11 (2), 288–295 (2020). doi: 10.1007/s12975-019-00714-x
- Doughty A., Keane G., Wadley A. J., Mahoney B., Bueno A. A., and Coles S. J. Plasma concentrations of thioredoxin, thioredoxin reductase and peroxiredoxin-4 can identify high risk patients and predict outcome in patients with acute coronary syndrome: A clinical observation. Int. J. Cardiol., 403, 131888 (2024). doi: 10.1016/j.ijcard.2024.131888
- Tang B., Ni W., Zhou J., Ling Y., Niu D., Lu X., Chen T., Ramalingam M., and Hu J. Peroxiredoxin 6 secreted by Schwann-like cells protects neuron against ischemic stroke in rats via PTEN/PI3K/AKT pathway. Tissue Cell, 73, 101635 (2021). doi: 10.1016/j.tice.2021.101635
- Sharapov M. G., Glushkova O. V., Parfenyuk S. B., Gudkov S. V., Lunin S. M., and Novoselova E. G. The role of TLR4/NF-κB signaling in the radioprotective effects of exogenous Prdx6. Arch. Biochem. Biophys., 702, 108830 (2021). doi: 10.1016/j.abb.2021.108830
- Robinson M. W., Hutchinson A. T., Dalton J. P., and Donnelly S. Peroxiredoxin: a central player in immune modulation. Parasite Immunol., 32 (5), 305–313 (2010). doi: 10.1111/j.1365-3024.2010.01201.x
- Price D. R. G., Nisbet A. J., Frew D., Bartley Y., Oliver E. M., McLean K., Inglis N. F., Watson E., Corripio-Miyar Y., and McNeilly T. N. Characterisation of a niche-specific excretory-secretory peroxiredoxin from the parasitic nematode Teladorsagia circumcincta. Parasit. Vectors, 12 (1), 339 (2019). doi: 10.1186/s13071-019-3593-6
- Park J., Kim S., Jung H. Y., Bae E. H., Shin M., Park J. I., Choi S. Y., Yi S. J., and Kim K. Peroxiredoxin 1-Toll-like receptor 4-p65 axis inhibits receptor activator of nuclear factor kappa-B ligand-mediated osteoclast differentiation. iScience, 27 (12), 111455 (2024). doi: 10.1016/j.isci.2024.111455
- Kim Y. J., Lee W. S., Ip C., Chae H. Z., Park E. M., and Park Y. M. Prx1 suppresses radiation-induced c-Jun NH2-terminal kinase signaling in lung cancer cells through interaction with the glutathione S-transferase Pi/c-Jun NH2-terminal kinase complex. Cancer Res., 66 (14), 7136–7142 (2006). doi: 10.1158/0008-5472.CAN-05-4446
- Son Y. W., Cheon M. G., Kim Y., and Jang H. H. Prx2 links ROS homeostasis to stemness of cancer stem cells. Free Rad. Biol. Med., 134, 260–267 (2019). doi: 10.1016/j.freeradbiomed.2019.01.001
- Sabharwal S. S., Waypa G. B., Marks J. D., and Schumacker P. T. Peroxiredoxin-5 targeted to the mitochondrial intermembrane space attenuates hypoxia-induced reactive oxygen species signalling. Biochem. J., 456 (3), 337–346 (2023). doi: 10.1042/BJ20130740
- Zou S., Liu J., Sun Z., Feng X., Wang Z., Jin Y., and Yang Z. Discovery of hPRDX5-based peptide inhibitors blocking PD-1/PD-L1 interaction through in silico proteolysis and rational design. Cancer Chemother. Pharmacol., 85 (1), 185–193 (2020). doi: 10.1007/s00280-019-03995-z
- Pillay C. S., John N., Barry C. J., Mthethwa L. M. D. C., and Rohwer J. M. Atypical network topologies enhance the reductive capacity of pathogen thiol antioxidant defense networks. Redox Biol., 65, 102802 (2023). doi: 10.1016/j.redox.2023.102802
- Van Loenhout J., Freire Boullosa L., Quatannens D., De Waele J., Merlin C., Lambrechts H., Lau H.W., Hermans C., Lin A., Lardon F., Peeters M., Bogaerts A., Smits E., and Deben C. Auranofin and cold atmospheric plasma synergize to trigger distinct cell death mechanisms and immunogenic responses in glioblastoma. Cells, 10 (11), 2936 (2021). doi: 10.3390/cells10112936
- Egetemaier S. M., Chauvistre H., Varaljai R., Hua Y., Lueong S. S., Makhzami S., Srinivas N., Forster J., Ullrich V., Stupia S., Schroeder V., Scharfenberg S., Hoewner A., Shannan B., Siveke J., Baietti M. F., Leucci E., Marine J. C., Paschen A., Scheffler B., Engel D. R., Becker L. M., Nensa F., Koester J., Grunwald B. T., Poepsel S., Ninck S., Kaschani F., Schadendorf D., Becker J. C., Tasdogan A., Rambow F., and Roesch A. Redirecting resistance evolution in BRAFV600 melanoma by inhibition of the peroxiredoxin-thioredoxin system. bioRxiv, 2025-03 (2025). doi: 10.1101/2025.03.10.641595
- Yu P., Gu T., Rao Y., Liang W., Zhang X., Jiang H., Lu J., She J., Guo J., Yang W., Liu Y., Tu Y., Tang L., and Zhou X. A novel marine-derived anti-acute kidney injury agent targeting peroxiredoxin 1 and its nanodelivery strategy based on ADME optimization. Acta Pharm. Sin. B, 14 (7), 3232–3250 (2024). doi: 10.1016/j.apsb.2024.03.005
- Xu L., Cao Y., Xu Y., Li R., and Xu X. Redox-responsive polymeric nanoparticle for nucleic acid delivery and cancer therapy: Progress, opportunities, and challenges. Macromol. Biosci., 24 (3), 2300238 (2024). doi: 10.1002/mabi.202300238
- Ardini M., Bellelli A., Williams D. L., Di Leandro L., Giansanti F., Cimini A., Ippoliti R., and Angelucci F. Taking advantage of the morpheein behavior of peroxiredoxin in bionanotechnology. Bioconjug. Chem., 32 (1), 43–62 (2021). doi: 10.1021/acs.bioconjchem.0c00621
补充文件

