Penetration of Polyphenols through Acetic Acid-Damaged Skin

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Our previous research has shown that derivatives of taxifolin, pentaglutarate of taxifolin and a conjugate of taxifolin with glyoxalic acid improve the mechanical properties of the collagen-based materials. During the degradation process of these materials, the biologically active polyphenols are released into the surrounding medium. To evaluate the penetration of polyphenols through burn-injured skin, two approaches were used. In case of pentaglutarate of taxifolin and taxifolin (they were used for comparison), polyphenols were labeled by fluorescent probe. In case of a conjugate, the fluorescent analogue was obtained. It was shown that the application of polyphenols on the damaged area of skin leads to the formation of fluorescent layer on its surface. It was found that hair follicles accumulate fluorescent derivatives of taxifolin and pentaglutarate of taxifolin. In regard to taxifolin, the fluorescence was observed in the deeper skin layers than that recorded for pentaglutarate of taxifolin, suggesting that taxifolin penetrate the skin more effectively. The fluorescent analogue accumulation in skin appendages showed lower values than that of other compounds. Thus, the data obtained demonstrate that polyphenols accumulate in hair follicles, from which they can be gradually released into the surrounding tissue. On the whole, our findings suggest that biologically active polyphenols are able to exert prolonged effects when they are used for topical application. This may be important while treating burns, especially second-degree burns, in which many skin appendages remain intact.

作者简介

V. Shubina

Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences

Email: shubinavictoria@yandex.ru
Pushchino, Russia

Yu. Shatalin

Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences

Pushchino, Russia

参考

  1. Peck M., Molnar J., and Swart D. A global plan for burn prevention and care. Bull. World Health Organ., 87, 802–803 (2009). doi: 10.2471/BLT.08.059733
  2. Здравоохранение в России. Статистический сборник (Росстат, М., 2019).
  3. Будкевич Л. И., Мирзоян Г. В., Габитов Р. Б., Бразоль М. А., Салистый П. В., Чикинев Ю. В., Шмырин А. А. и Глуткин А. В. Биопластический коллагеновый материал «Коллост» при лечении ожоговой травмы. Современные технологии в медицине, 12 (1), 92 (2020). doi: 10.17691/stm2020.12.1.12
  4. Chattopadhyay S. and Raines R. T. Collagen‐based biomaterials for wound healing. Biopolymers, 101 (8), 821–833 (2014). doi: 10.1002/bip.22486
  5. Ермолов А. С., Смирнов С. В., Карасев Н. А., Курилин Б. Л., Кислухина Е. В., Киселевская-Бабинина И. В. и Васильев В. А. Анализ основных показателей работы московского городского ожогового центра после модернизации. Журн. им. Н.В. Склифосовского «Неотложная медицинская помощь», № 1, 60–62 (2016).
  6. Файзуллин А. Л., Шехтер А. Б., Истранов Л. П., Истранова Е. В., Руденко Т. Г. , Гуллер А. Е., Абоянц Р. К., Тимашев П. С. и Бутнару Д. В. Биорезорбируемые коллагеновые материалы в хирургии: 50 лет успеха. Сеченовский вестник, 11 (1), 59 (2020).
  7. Liu R., Dai L., Si C., and Zeng Z. Antibacterial and hemostatic hydrogel via nanocomposite from cellulose nanofibers. Carbohydr. Polym., 195, 63–70 (2018). doi: 10.1016/j.carbpol.2018.04.085
  8. Gu L., Shan T., Ma Y., Tay F.R., and Niu L. Novel biomedical applications of crosslinked collagen. Trends Biotechnol. 37, 464–491 (2019). doi: 10.1016/j.tibtech.2018.10.007
  9. Нащекина Ю. А., Луконина О. А. и Михайлова Н. А. Химические сшивающие агенты для коллагена: механизмы взаимодействия и перспективность применения в регенеративной медицине. Цитология, 62 (7), 459 (2020).
  10. Adamiak K. and Sionkowska A. Current methods of collagen cross-linking: review. Int. J. Biol. Macromol., 161, 550–560 (2020). doi: 10.1016/j.ijbiomac.2020.06.075
  11. Chak V., Kumar D., and Visht S. A review on collagen based drug delivery systems. Int. J. Pharm. Teach. Pract., 4, 811 (2013).
  12. Hwang J., Sullivan M. O., and Kiick K. L. Targeted drug delivery via the use of ECM-mimetic materials. Front. Bioeng. Biotechnol., 8, 69 (2020). doi: 10.3389/fbioe.2020.00069
  13. Terzopoulou Z., Michopoulou A., Palamidi A., Koliakou E., and Bikiaris D. Preparation and evaluation of collagen-based patches as curcumin carriers. Polymers, 12, 2393 (2020). doi: 10.3390/polym12102393
  14. Shekhter A. B., Rudenko T. G., Istranov L. P., Guller A. E., Borodulin R. R., and Vanin A. F. Dinitrosyl iron complexes with glutathione incorporated into a collagen matrix as a base for the design of drugs accelerating skin wound healing. Eur. J. Pharm. Sci., 78, 8–18 (2015). doi: 10.1016/j.ejps.2015.06.002.
  15. Adhirajan N., Shanmugasundaram N., Shanmuganathan S., and Babu M. Collagen-based wound dressing for doxycycline delivery: in-vivo evaluation in an infected excisional wound model in rats. J. Pharm. Pharmacol., 61, 1617–1623 (2010). doi: 10.1211/jpp.61.12.0005.
  16. Jana P., Mitra T., Selvaraj T. K. R., Gnanamani A., and Kundu P. P. Preparation of guar gum scaffold film grafted with ethylenediamine and fish scale collagen, cross-linked with ceftazidime for wound healing application. Carbohydr. Polym., 153, 573–581 (2016). doi: 10.1016/j.carbpol.2016.07.053
  17. Simoes D., Miguel S. P., Ribeiro M. P., Coutinho P., Mendonca A. G., and Correia I. J. Recent advances on antimicrobial wound dressing: a review. Eur. J. Pharm. Biopharm., 127, 130–141 (2018). doi: 10.1016/j.ejpb.2018.02.022
  18. Gomathi K., Gopinath D., Rafiuddin Ahmed M., and Jayakumar R. Quercetin incorporated collagen matrices for dermal wound healing processes in rat. Biomaterials, 24, 2767–2772 (2003). doi: 10.1016/S0142-9612(03)00059-0
  19. Gopinath D., Ahmed M. R., Gomathi K., Chitra K., Sehgal P. K., and Jayakumar R. Dermal wound healing processes with curcumin incorporated collagen films. Biomaterials, 25, 1911–1917 (2004). doi: 10.1016/S0142-9612(03)00625-2
  20. Kim H., Kawazoe T., Han D.-W., Matsumara K., Suzuki S., Tsutsumi S., and Hyon S.-H. Enhanced wound healing by an epigallocatechin gallate-incorporated collagen sponge in diabetic mice: wound healing by EGCG-incorporated collagen sponge. Wound Repair Regen., 16, 714–720 (2008). doi: 10.1111/j.1524-475X.2008.00422.x
  21. Oryan A., Kamali A., Moshiri A., Baharvand H., and Daemi H. Chemical crosslinking of biopolymeric scaffolds: current knowledge and future directions of crosslinked engineered bone scaffolds. Int. J. Biol. Macromol., 107, 678–688 (2018). doi: 10.1016/j.ijbiomac.2017.08.184
  22. Huang G. P., Shanmugasundaram S., Masih P., Pandya D., Amara S., Collins G., and Arinzeh T. L. An investigation of common crosslinking agents on the stability of electrospun collagen scaffolds: an investigation of common crosslinking agents. J. Biomed. Mater. Res. A, 103, 762–771 (2015). doi: 10.1002/jbm.a.35222
  23. Gough J. E., Scotchford C. A., and Downes S. Cytotoxicity of glutaraldehyde crosslinked collagen/poly(vinyl alcohol) films is by the mechanism of apoptosis. J. Biomed. Mater. Res., 61, 121–130 (2002). doi: 10.1002/jbm.10145
  24. Reddy N., Reddy R., and Jiang Q. Crosslinking biopolymers for biomedical applications. Trends Biotechnol., 33, 362–369 (2015). doi: 10.1016/j.tibtech.2015.03.008
  25. Wang X., Ma B., and Chang J. Preparation of decellularized vascular matrix by co-crosslinking of procyanidins and glutaraldehyde. Biomed. Mater. Eng., 26, 19-30 (2015). doi: 10.3233/BME-151548
  26. Bax D. V., Davidenko N., Gullberg D., Hamaia S. W., Farndale R. W., Best S. M., and Cameron R. E. Fundamental insight into the effect of carbodiimide crosslinking on cellular recognition of collagen-based scaffolds. Acta Biomater., 49, 218–234 (2017). doi: 10.1016/j.actbio.2016.11.059
  27. Shavandi A., Bekhit A. E.-D. A., Saeedi P., Izadifar Z., Bekhit A. A., and Khademhosseini A. Polyphenol uses in biomaterials engineering. Biomaterials, 167, 91–106 (2018). doi: 10.1016/j.biomaterials.2018.03.018
  28. Manjari M. S., Aaron K. P., Muralidharan C., and Rose C. Highly biocompatible novel polyphenol crosslinked collagen scaffold for potential tissue engineering applications. React. Funct. Polym., 153, 104630 (2020). doi: 10.1016/j.reactfunctpolym.2020.104630
  29. Zhang X., Li Z., Yang P., Duan G., Liu X., Gu Z., and Li Y. Polyphenol scaffolds in tissue engineering. Mater. Horiz., 8 (1), 145–167 (2021). doi: 10.1039/D0MH01317J
  30. Kaczmarek B. Tannic acid with antiviral and antibacterial activity as a promising component of biomaterials – a minireview. Materials, 13 (14), 3224 (2020). doi: 10.3390/ma13143224
  31. Kaczmarek B. and Mazur O. Collagen-based materials modified by phenolic acids – a review. Materials, 13 (16), 3641 (2020). doi: 10.3390/ma13163641
  32. Schlebusch H. and Kern D. Stabilization of collagen by polyphenols. J. Vasc. Res., 9 (3–6), 248–256 (1972). doi: 10.1159/000157937
  33. Тараховский Ю. С., Селезнева И. И., Васильева Н. А., Егорочкин М. А. и Ким Ю. А. Ускорение фибриллообразования и температурная стабилизация фибрилл коллагена в присутствии таксифолина (дигидрокверцетина). Бюл. эксперим. биологии и медицины, 144 (12), 640–643 (2007). doi: 10.1007/s10517-007-0433-z
  34. Madhan B., Subramanian V., Rao J. R., Nair B. U., and Ramasami T. Stabilization of collagen using plant polyphenol: role of catechin. Int. J. Biol. Macromol., 37 (1–2), 47–53 (2005). doi: 10.1016/j.ijbiomac.2005.08.005
  35. Han B., Jaurequi J., Tang B. W., and Nimni M. E. Proanthocyanidin: a natural crosslinking reagent for stabilizing collagen matrices. J. Biomed. Mater. Res. A, 65 (1), 118–124 (2003). doi: 10.1002/jbm.a.10460
  36. Greco K. V., Francis L., Huang H., Ploeg R., Boccaccini A. R., and Ansari T. Is Quercetin an alternative natural crosslinking agent to genipin for long‐term dermal scaffolds implantation? J. Tissue Eng. Regen. Med., 12 (3), e1716–e1724 (2018). doi: 10.1002/term.2338
  37. He L., Mu C., Shi J., Zhang Q., Shi B., and Lin W. Modification of collagen with a natural cross-linker, procyanidin. Int. J. Biol. Macromol., 48 (2), 354–359 (2011). doi: 10.1016/j.ijbiomac.2010.12.012
  38. Pinheiro A., Cooley A., Liao J., Prabhu R., and Elder S. Comparison of natural crosslinking agents for the stabilization of xenogenic articular cartilage. J. Orthop. Res., 34 (6), 1037–1046 (2016). doi: 10.1002/jor.23121
  39. Liu Y. and Wang Y. Proanthocyanidins’ efficacy in stabilizing dentin collagen against enzymatic degradation: MALDI-TOF and FTIR analyses. J. Dent., 41 (6), 535–542 (2013). doi: 10.1016/j.jdent.2013.03.007
  40. Liu H., Guo J., Wang R., and Wang Y. Theaflavins as a novel cross-linker quickly stabilize demineralized dentin collagen against degradation. Sci. Rep., 11 (1), 19699 (2021). doi: 10.1038/s41598-021-99186-z
  41. Chen C., Yang H., Yang X., and Ma Q. Tannic acid: a crosslinker leading to versatile functional polymeric networks: a review. RSC Adv., 12 (13), 7689–7711 (2022). doi: 10.1039/D1RA07657D
  42. Li Z., Chen Z., Chen H., Chen K., Tao W., Ouyang X., Mei L., and Zeng X. Polyphenol-based hydrogels: pyramid evolution from crosslinked structures to biomedical applications and the reverse design. Bioact. Mater., 17, 49–70 (2022). doi: 10.1016/j.bioactmat.2022.01.038
  43. Shevelev A. B., La Porta N., Isakova E. P., Martens S., Biryukova Y. K., Belous A. S., Sivokhin D. A., Trubnikova E. V., Zylkova M. V., Belyakova A. V., Smirnova M. S., and Deryabina Yu. I. In vivo antimicrobial and wound-healing activity of resveratrol, dihydroquercetin, and dihydromyricetin against Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans. Pathogens, 9 (4), 296 (2020). doi: 10.3390/pathogens9040296
  44. Carvalho M. T. B., Araujo-Filho H. G., Barreto A. S., Quintans-Junior L. J., Quintans J. S. S., and Barreto R. S. S. Wound healing properties of flavonoids: a systematic review highlighting the mechanisms of action. Phytomedicine, 90, 153636 (2021). doi: 10.1016/j.phymed.2021.153636
  45. Nguyen V.-L., Truong C.-T., Nguyen B. C. Q., Vo T.-N. V., Dao T.-T., Nguyen V.-D., Trinh D.-T. T., Huynh H. K., and Bui C.-B. Anti-inflammatory and wound healing activities of calophyllolide isolated from calophyllum inophyllum linn. PLos One, 12 (10), e0185674 (2017). doi: 10.1371/journal.pone.0185674
  46. Bhaskar Rao A. and Ernala P., Deepthi Seelam S., Vennapusa H., Sistla R., Kuncha M., Surekha Mullapudi V., Rao Yerramilli S. Wound healing: a new perspective on glucosylated tetrahydrocurcumin. Drug Des. Devel. Ther., 9, 3579–3588 (2015). doi: 10.2147/DDDT.S85041
  47. Yeh C.-J., Chen C.-C., Leu Y.-L., Lin M.-W., Chiu M.-M., and Wang S.-H. The effects of artocarpin on wound healing: in vitro and in vivo studies. Sci. Rep., 7 (1), 15599 (2017). doi: 10.1038/s41598-017-15876-7
  48. Ang L., Darwis Y., Koh R., Gah Leong K., Yew M., Por L., and Yam M. Wound healing property of curcuminoids as a microcapsule-incorporated cream. Pharmaceutics, 11 (5), 205 (2019). doi: 10.3390/pharmaceutics11050205
  49. Шаталин Ю. В. и Шубина В. С. Материал на основе коллагена и таксифолина. Биофизика, 60 (3), 583–588 (2015).
  50. Shatalin Yu. V., Kobyakov M. I., and Shubina V. S. Modulation of adhesion and migration of NIH/3T3 cells in collagen materials by taxifolin derivatives. Biochem. Mosc. Suppl. Ser. Membr. Cell Biol., 17, S85–S93 (2023). doi: 10.1134/S1990747823070048
  51. Шаталин Ю. В. и Шубина В. С. Железосвязывающая и железовосстанавливающая способность материала, полученного на основе коллагена и таксифолина (дигидрокверцетина), в физиологических и патофизиологических условиях. Хим.фармацевтич. журн., 53 (2), 52–56 (2019). doi: 10.30906/0023-1134-2019-53-2-52-56
  52. Shubina V. S. and Shatalin Y. V. Antioxidant and ironchelating properties of taxifolin and its condensation product with glyoxylic acid. J. Food Sci. Technol., 54 (6), 1467–1475 (2017). doi: 10.1007/s13197-017-2573-0
  53. Shubina V. S., Kozina V. I., and Shatalin Y. V. Comparison of antioxidant properties of a conjugate of taxifolin with glyoxylic acid and selected flavonoids. Antioxidants, 10, 1262 (2021). doi: 10.3390/antiox10081262
  54. Shubina V. S., Kozina V. I., and Shatalin Y. V. A comparative study of the inhibitory effect of some flavonoids and a conjugate of taxifolin with glyoxylic acid on the oxidative burst of neutrophils. Int. J. Mol. Sci., 24, 15068 (2023). doi: 10.3390/ijms242015068
  55. Шубина В. С., Кобякова М. И. и Шаталин Ю. В. Влияние таксифолина, конъюгата таксифолина с глиоксалевой кислотой и нарингенина на функциональную активность нейтрофилов. Биофизика, 68 (5), 941–948 (2023).
  56. Шубина В. С. и Шаталин Ю. В. Влияние липосомных препаратов на основе комплексов таксифолина с металлами переменной валентности на регенерацию кожи при химическом ожоге. Цитология, 54 (3), 251–260 (2012).
  57. Шубина В. С. и Шаталин Ю. В. Регенерация кожи после химического ожога в присутствии препаратов на основе производных таксифолина. Клеточные технологии в биологии и медицине, 3, 160–166 (2012).
  58. Kiehlmann E. Preparation and partial deacetylation of dihydroquercetin acetates. Org. Prep. Proced. Int., 31 (1), 87–97 (1999). doi: 10.1080/00304949909355676
  59. Park M. K., Shim J. J., and Ra C. S. Efficient cyclization of substituted diphenols: application to the synthesis of sulforhodamine B. Clean Technol., 21 (2), 102–107 (2015). doi: 10.7464/KSCT.2015.21.2.102
  60. Blume-Peytavi U., and Vogt A. Human Hair Follicle: Reservoir Function and Selective Targeting: Human Hair Follicle. Br. J. Dermatol., 165, 13–17 (2011). doi: 10.1111/j.1365-2133.2011.10572.x
  61. Patzelt A. and Lademann J. Drug delivery to hair follicles. Expert Opin. Drug Deliv., 10 (6), 787–797 (2013). doi: 10.1517/17425247.2013.776038

版权所有 © Russian Academy of Sciences, 2024

##common.cookie##