Adaptive Self-Defense of Mature Cells against Damage Is Based on the Warburg Effect, De-Differentiation of Cells and Resistance to Cell Death

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

This review analyzes the hypothesis of the preserved ability of various specialized mammalian cells to protect themselves from lethal injury by enacting a protective atavistic mechanism of cell dedifferentiation. The development of such protection is accompanied by a transition of differentiated cells from the mitochondrial oxygen-dependent type of metabolism to regenerative oxygen-independent metabolism (called the Warburg effect). This transition allows cells to increase the resistance to cell death from hypoxia, and can also induce the emergence of fetal markers characteristic of cell dedifferentiation. This paper, exemplified by the development of two pathologies (heart failure and type 2 diabetes), presents the findings that confirm the existence of such a mechanism and ways of its possible correction.

作者简介

P. Schwartsburd

Institute of Theoretical and Experimental Biophysics, Russian Academy of Scienc

Email: P.Schwartsburd@rambler.ru
Pushchino, Russia

参考

  1. Guo Y., Wu W., Yang X., and Fu X. Dedifferentiation and in vivo reprogramming of committed cells in wound repair (Review). Mol. Med. Reports, 26 (6), 369 (2020). doi: 10.3892/mmr.2022.12886
  2. Schwartsburd P. M. and Aslanidi K. B. Hypoxic cancer cells protect themselves against damage: Search for a single-cell indicator of this protective response. Novel Approach in Cancer Study, 7 (4), 000668 (2023). DOI: 1031031/NACS.2023.07.000668
  3. Warburg O., Wind F., and Negelein E. The metabolism of tumours in the body. J. Gen. Physiol., 8 (6), 519-530 (1927).
  4. Riester M., Xu Q., Moreira A., Zheng J., Michor F., and Downey R. The Warburg effect: persistence of stem-cell metabolism in cancers as a failure of differentiation. Ann. Oncol., 29 (1), 264–270 (2018). doi: 10.1093/annonc/mdx645
  5. Serio S., Pagiatakis C., Musolina E., Felicetta A. Carullo P., Frances J. L., Papa L., Rozzi G., Salvarani N., Miragoli M., Gornati R., Bernardini G., Condorelli G., and Papah R. Cardiac aging is promoted by pseudohypoxia increasing p300-induces glycolysis. Circ. Res., 133 (8), 686–703 (2023). doi: 10.1161/CIRCRESAHA.123.322676
  6. Williamson J. R., Chang K., Frangos M., Hasan K. S., Ido Y., Kawamura T., Nyengaard J. R., van den Enden M., Kilo C., and Tilton R. G. Hyperglycemic pseudohypoxia and diabetic complications. Diabetes, 42 (6), 801–813 (1993). doi: 10.2337/diab.42.6.801
  7. Pecze L., Randi E. B., and Szabo C. Meta-analysis of metabolites involved in bioenergetic pathways reveals a pseudo-hypoxic state in Down syndrome. Mol. Med., 26 (1), 102 (2020). doi: 10.1186/s10020-020-00225-8
  8. Salminen A., Kauppinen K., and Kaarniranta K. Hypoxia/ischemia active processing of amypoid precursor protein: impact of vascular dysfunction in the pathogenesis of Alzheimer’s disease. J. Neurochem., 140 (4), 536–549 (2017). doi: 10.1111/jnc.13932
  9. Go S., Kramer T. T., Verhoeven A. J., Oude Elferink R. P. J., and Chang J.-Ch. The extracellular lactate-to-pyruvate ratio modulates the sensitivity to oxidative stress-induced apoptosis via the cytosolic NADH/NAD+ redox state. Apoptosis, 26 (1–2), 38–51 (2021). doi: 10.1007/s10495-020-01648-8
  10. Gwangwa A., Joubert A. M., and Visagise M. H. Crosstalk between Warburg effect, redox regulation and autophagia. Cell. Mol. Biol. Lett., 23, 20 (2018). DOI: 10/1186/s11658-018-0088-y
  11. Schwartsburd P. M. Lipid droplets: Could they be involved in cancer growth and cancer-microenvironment communication? Cancer Commun. (London), 42 (2), 83–87 (2022). doi: 10.1002/cac2.12257
  12. Chen Z., Liu M., Li L., and Chen L. Involvement of the Warburg effect in non-tumour diseases processes. J. Cell Physiol., 233 (4), 2839–2849 (2018). doi: 10.1002/jcp.25998
  13. Beisaw A. and Wu C.-C. Cardiomyocyte maturation and its reversal during cardiac regeneration. Dev. Dynamic., 253 (1), 8–27 (2024). doi: 10.1002/dvdy.557
  14. Li X., Wu F., Gunther S., Looso M., Kuenne C., ZhangT., Wiesnet M., Klatt S., Zukunft S., Fleming I., Poschet G., Wietelmann A., Atzberger A., Potente M., Yuan X., and Braun T. Inhibition of fatty acid oxidation enables heart regeneration in adult mice. Nature, 622 (7983), 619–627 (2023). doi: 10.1038/s41586-023-06585-5
  15. Polling J., Gajawaba P., Lorchner H., Polyakova V., Szibor M., Bottger T., Warnecke H., Kubin T., and Braun T. The Janus face of OSM-mediated cardiomyocyte dedifferentiation during cardiac repair and diseases. Cell Cycle, 11 (3), 439–445 (2012). doi: 10.4161/cc.11.3.19024
  16. Accili D., Talchai S. C., Kim-Muller J. Y., Cinti F., Ishida E., Ordelheide A. M., Kuo T., Fan J., and Son J. When β-cells fail: lesion from dedifferentiation. Diabetes Obes. Metab., 18 (Suppl. 1), 117–122 (2016). DOL: 10.1111/dom.12723
  17. Bensellam M., Jonas J.-C., and Laybutt R. D. Mechanism of β-cell dedifferentiation in diabetes: recent findings and future directions. Endocrinology, 236 (2), R109–R143 (2018). doi: 10.1530/JOE-17-0516
  18. Weksler-Zanngen S. Is type 2 diabetes a primary mitochondrial disorder? Cells, 11 (10), 1617 (2022). doi: 10.3390/cells11101617
  19. Wu J., Jin Z., Zheng H., and Yan L.-J. Sources and implication of NADH/NAD redox imbalance in diabetes and its complications. Diabetes, Metabolic Syndromes & Obesity: Targets and Therapy, 9, 145–153 (2016). doi: 10.2147/DMSO.S106087J
  20. Song J., Yang X., and Yan L.-J. Role of pseudohypoxia in the pathogenesis of type 2 diabetes. Hypoxia, 7, 33–40 (2019). doi: 10.2147/HP.S202775
  21. Yan L-J. Pathogenesis of chronic hyper-glycemia: From reductive stress to oxidative stress. J. Diabetes Res., 2014, 1379199 (2014). doi: 10.1155/2014/137919
  22. Kim-Muller J. Y., Fan J., Kim Y. J., Lee S. A., Ishida E., Blaner W. S., and Accili D. Aldehyde dehydrogenase 1a3 defines a subset of failing pancreatic beta cells in diabetic mice. Nature Commun., 7, 12631 (2016). doi: 10.1038/ncomms12631
  23. Cheng C. W., Villani V., Buono R., Wei M., Kumar S., Omer H., Cohen P., Sneddon J. B., Perin L., and Longo V. D. Fasting-mimicking diet promotes Ngn-driven β-cell regeneration reverse diabetes. Cell, 168 (5), 775–788.e12 (2017). doi: 10.1016/j.cell.2017.01.040
  24. Ishida E., Kim-Muller J. Y., and Accili D. Pair feeding, but not insulin, phlorizin, or rosiglitazone treatment, curtails markers of β-cell dedifferentiation in db/db mice. Diabetes, 66 (8), 2092–2101 (2017). doi: 10.2337/db16-1213
  25. Rodnoi P. Neuropeptide Y expression marks partially differentiated β-cells in mice and human. JCI insight, 2 (12), e94005 (2017). DOI: 101172/jci.insight.94005
  26. Макрушин А. В. и Худолей В. В. Опухоль как атавистическая адаптивная реакция на условия окружающей среды. Журн. общ. биологии, 52 (5), 717–720 (1991).
  27. Byun Y., Youn Y.-S., Lee Y.-J., Choi Y.-H., Woo S.-Y., and Kang J. L. Interaction of apoptotic cells with macrophages upregulates COX-2/PGE2 and HGF expression via a positive feedback loop. Mediators Inflamm., 2014, 463524, (2014). doi: 10.1155/2014/463524
  28. Clement N., Glorian M., Raymondjean M., Andreani M., and Limon I. PGE2 amplifies the effects of IL-1β on vascular smooth muscle cell de-differentiation: A consequence of the versatility of PGE2 receptors 3 due to the emerging expression of adenylyl cyclase 8. J. Cell Physiol., 208 (3), 495–505 (2006). doi: 10.1002/jcp.20673
  29. Cheng H., Huang H., Guo Z., Chang Y., and Li Z. Role of prostaglandin E2 in tissue repair and regeneration. Theranostics, 11 (18), 8836–8854 (2021). doi: 10.7150/thno.63396
  30. Son J. and Accili D. Reversing pancreatic β-cell dedifferentiation in the treatment of type 2 diabetes. Experim. Mol. Med., 55 (8), 1652–1658 (2023). doi: 10.1038/s12276-023-01043-8
  31. Bassat E., Mutlak Y. E., Genzelimakh S., Shadrin I. Y., Umansky K. B., Yifa O., Kain D., Rajchman D., Leach J., Bassat D. R., Udi Y., Sarig R., Sadi I., Martin J. F., Bursac N., Cohen S., and Tzahor E. The extracellular matrix protein agrin promotes heart regeneration in mice. Nature, 547 (7662), 179–184 (2017). doi: 10.1038/nature22978
  32. Gladka M., Jahansen A. K., Kampen S. J., Peters M.C., Molenaar B., Versteeg D., Kooijman L., Zentilin L., Giacca M., and van Rooij E. Thymosin β and pro-thymosin α promote cardiac regeneration post ischemic injury in mice. Cardiovasc. Res., 119 (3), 802–812 (2023). doi: 10.1093/cvr/cvac155
  33. Schwartsburd P. M. Un-healing wound in tissues adjacent to cancer as a result of competitive interactions between the embryonic and mature tissue repair programs. Med. Hypothesis, 73 (6), 1041–1044 (2009). doi: 10.1016/j.mehy.2009.03.054
  34. Schwartsburd P. M. Chronic inflammation as inductor of pro-cancer microenvironment: Pathogenesis of dysregulated feedback control. Cancer Metastasis Rev., 22 (1), 95–102 (2003). doi: 10.1023/a:1022220219975
  35. Шварцбурд П. М. Стволовые клетки и предраковое воспалительное микроокружение в развитии эпителиальных новообразований при старении. Успехи геронтологии, 21 (3), 356–366 (2008).

版权所有 © Russian Academy of Sciences, 2024

##common.cookie##