The specificity of interactions between endoinulinase from Aspergillus ficuum and mono-, diand polysaccharides

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The aim of this study was to analyze the peculiarities of spatial organization of an endoinulinase molecule from Aspergillus ficuum after its binding to mono-, di-, and polysaccharides. This study examined changes in volume and number of internal cavities upon binding of inulinase to mono- (glucose, fructose), di- (sucrose, mannose), and polysaccharides (inulin). Transformations in the quantity and length of tunnels and pores were described, and the reorganization of the composition and localization of charged and hydrophobic amino acid residues clusters on the surface of the enzyme molecule was analyzed. It was shown that the models of inulinase in the complex with sucrose (an alternative substrate) and mannose (an activator) exhibit the same types of internal structures. The similar pattern was found in the formation of complexes with fructose (a reaction product) and glucose (an inhibitor). In addition, it was established that both charged and hydrophobic clusters do not undergo significant changes in chemical composition after the binding of inulinase to mono-, di-, and polysaccharides, i.e., the interaction between inulinase and carbohydrates mentioned above primarily affects the internal structures of the enzyme. The specificity of the binding of inulinases to various ligands should be taken into account while developing modern industrial biocatalysts based on inulinase.

作者简介

S. Makin

Voronezh State University

Voronezh, Russia

A. Dubovitskaya

Voronezh State University

Voronezh, Russia

D. Bogomolov

Voronezh State University

Voronezh, Russia

M. Kondratyev

Voronezh State University;Institute of Cell Biophysics, Russian Academy of Sciences

Voronezh, Russia;Pushchino, Moscow Region, Russia

M. Holyavka

Voronezh State University;Sevastopol State University

Email: holyavka@rambler.ru
Voronezh, Russia

V. Artyukhov

Voronezh State University

Voronezh, Russia

参考

  1. M. G. Holyavka, A. R. Kayumov, D. R. Baydamshina, et al., Int. J. Biol. Macromol., 115, 829 (2018).
  2. В. А. Абелян и Л. С. Манукян, Биохимия, 61 (6), 1028 (1996).
  3. T. A. Kovaleva, M. G. Kholyavka, and V. G. Artyukhov, Biotechnology in Russia, 1, 43 (2012).
  4. R. S. Singh, T. Singh, and C. Larroche, Bioresour Technol. 273, 641 (2019).
  5. A. Mathur and D. Sadana, World J. Pharmacy Pharmaceut. Sci., 10 (4), 360 (2021).
  6. Q. Meng, C. Lu, H. Gao, et al., Bioresour. Technol., 320, 124346 (2021).
  7. L. Zhang, C. Zhao, W. Y. Ohta, and Y. Wang, Process Biochemistry, 40 (5), 1541 (2005).
  8. R. I. Corona, A. Morales-Burgos, C. Pelayo, et al., Bioprocess Biosyst. Eng., 42, 1779 (2019).
  9. M. Germec and I. Turhan, Biomass Convers. Biorefin., 13 (6), 4727 (2021).
  10. D. Das, R. Selvaraj, and M. Ramananda Bhat, Biocatal. Agric. Biotechnol., 22, 101363 (2019).
  11. E. J. Vandamme and D. G. Derycke, Adv. Appl. Microbiol., 29, 139 (1983).
  12. M. G. Holyavka, V. G Artyukhov, and T. A. Kovaleva, Biocatal. Biotransformation, 34 (1), 1 (2016).
  13. Q. Sun, M. Arif, Z. Chi, et al., Int. J. Biol. Macromol., 169, 206 (2021).
  14. Т. А. Ковалева, М. Г. Холявка, М. И. Калашникова и Д. А. Сливкин, Технологии живых систем, 1, 60 (2011).
  15. М. Г. Холявка и В. Г. Артюхов, Инулиназы в условиях различного микроокружения: биофизические, кинетические и структурно-функциональные свойства (Изд. дом ВГУ, Воронеж, 2018).
  16. M. G. Holyavka, M. S. Kondratyev, A. A. Samchenko, et al., Comput. Biol. Med., 71, 198 (2016).
  17. L. Pravda, K. Berka, R. Svoboclova-Varckova, et al., BMC Bioinformatics, 15 (1), 379 (2014).
  18. G. P. Barletta and S. Fernandez-Alberti, J. Chem. Theory Comput., 14 (2), 998 (2018).
  19. J. Brezovsky, B. Kozlikova, and J. Damborsky, In Protein Engineering. Methods in Molecular Biology, Vol. 1685, Ed. by U. Bornscheuer, and M. Hohne (Humana Press, NewYork, 2018), pp. 25-42. doi: 10.1007/978-1-4939-7366-8_3
  20. M. Petfek, P. Kosinova, J. Koca, and M. Otyepka, Structure, 15 (11), 1357 (2007).
  21. A. Stank, D. B. Kokh, M. Horn, et al., Nucl. Acids Res., 45 (W1), W325 (2017).
  22. S. E. D. Dias, A. M. Martins, Q. T. Nguyen, and A. J. P. Gomes, BMC Bioinformatics, 18 (1), 1 (2017).
  23. H. Li and Y. O. Kamatari, In High Pressure Bioscience - Basic Concepts, Applications and Frontiers, Ed. by K. Akasaka and H. Matsuki (Springer, 2015), pp. 237-257.
  24. M. S. Mason, B.Y. Chen, and F. Jagodzinski, Molecules, 23 (2), 351 (2018).
  25. S. Marques, J. Brezovsky, and J. Damborsky, Understanding Enzymes: Function, Design, Engineering, and Analysis (Jenny Stanford Publishing, New York, 2016).
  26. P. Kokkonen, D. Bednar, G. Pinto, et al., Biotechnol. Adv., 37 (6), 107386 (2019).
  27. T. Davids, M. Schmidt, D. Bottcher, and U. T. Bornscheuer, Curr. Opin. Chem. Biol., 17 (2), 215 (2013).
  28. A. Stank, D. B. Kokh, J. C. Fuller, and R. C. Wade, Acc. Chem. Res., 49 (5), 809 (2016).
  29. U. Sreenivasan and P. H. Axelsen, Biochemistry, 51, 12785 (1992).
  30. Д. Ю. Богомолов, Ф. А. Сакибаев, М. Г. Холявка и др., Сорбционные и хроматографические процессы, 21 (4), 555 (2021).
  31. Т. А. Ковалева, М. Г. Холявка и В. Г Артюхов, Биотехнология 1, 43 (2012).

版权所有 © Russian Academy of Sciences, 2023

##common.cookie##