Application of optical analysis methods for non-invasive monitoring of blood oxygen saturation level

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

An intelligent optical system for medical express diagnostics has been developed and tested. A method for visualizing the oxygen status of biological tissues in the form of "digital images" describing the general functional state of the human body is demonstrated. It has been shown that the method of principal components and hierarchical clustering can be used in combination with optical methods for detecting hemoglobin forms in biological tissues to perform non-invasive monitoring and express diagnostics of the oxygen status of the human body. The results obtained show that it is possible to stratify the subjects into risk groups based on optical sensor readings. In comparison with pulse oximetry, the use of which is common for determining the oxygen saturation level of blood, the described method can be employed to estimate peripheral oxygen saturation, and thus thrombosis and ischemia of the extremities can be detected in time.

作者简介

M. Guzenko

Institute for Analytical Instrumentation, Russian Academy of Sciences

Email: maria51m@mail.ru
St. Petersburg, Russia

M. Mazing

Institute for Analytical Instrumentation, Russian Academy of Sciences

St. Petersburg, Russia

A. Zaitseva

Institute for Analytical Instrumentation, Russian Academy of Sciences

St. Petersburg, Russia

参考

  1. Л. П. Кислякова, А. Л. Буляница, Ю. Я. Кисляков и В. И. Гуляев, Научное приборостроение, 26 (2), 37 (2016).
  2. Yu. Ya. Kislyakov, S. A. Avduchenko, L. P. Kislyakova, and A. Yu. Zaitceva, J.Comput. Theor. Nanosci., 16, 4502 (2019).
  3. А. В. Абрамцова и В. Ю. Куликов, Медицина и образование в Сибири, 2, 8 (2011).
  4. M. T. Ganter, U. Schneider, M. Heinzelmann, et al., J. Clin. Anesth., 19, 569 (2007).
  5. J. Kofstad, Scand. J. Clin. Lab. Inv., 41 (4), 409 (1981).
  6. I. Hennesey and A. Japp, Arterial blood gases made easy (CBS, Churchill Livingstone, 2007).
  7. R. Beasley, A. McNaughton, and G. Robinson, Lancet, 367, 1124 (2006).
  8. D. P. Davis, J. Q. Hwang, and J. V. Dunford, Prehosp. Emerg. Care, 12, 46 (2008).
  9. K. Warrior, P. A. Chung, N. Ahmed, et al., Crit. Care Explor., 2 (6), 140 (2020).
  10. M. Javid, T. R. Magee, and R. B. Galland, Eur. J. Vasc. Endovasc. Surg., 35 (1), 84 (2008).
  11. H. Obara, K. Matsubara, and Yu. Kitagawa, Ann. Vasc. Diseases, 11 (4), 443 (2018).
  12. S. Nitecki, B. Brenner, A. Hoffman, et al., Eur. J. Vasc. Surg., 7 (4), 414 (1993).
  13. J. Yang, D. Zhang, A. F. Frangi, and J. Yang, IEEE Trans. Pattern Anal. Mach.Intell., 26 (1), 131 (2004).
  14. A. Daffertshofer, C. J. C. Lamoth, O. G. Meijer, and P. J. Beek, Clin. Biomech. 19 (4), 1 (2004).
  15. F. Murtagh and P. Contreras, WIREs: Data Mining and Knowledge Discovery, 7 (3), 1219 (2017).
  16. S. C. Johnson, Psychometrika, 32, 241 (1967).
  17. A. Yu. Zaitceva, L. P. Kislyakova, Yu. Ya. Kislyakov, and S. A. Avduchenko, J. Phys.: Conf. Ser. 1400 (3), 3022 (2019).
  18. Yu. Ya. Kislyakov, S. A. Avduchenko, L. P. Kislyakova, and A. Yu. Zaitceva, J.Comput. Theor. Nanosci. 16, 4502 (2019).
  19. Д. О. Кирсанов, Дисс.. д-ра хим. наук (СПбГУ, СПб., 2014).
  20. G. E. P. Box and N. R. Draper, Empirical Model-Building and Response Surface (Wiley, N.-Y., 1987).
  21. Р. М. Воронин, Актуальные проблемы медицины, 14 (10), 173 (2011).
  22. K. H. Esbensen, Multivariate Data Analysis - in practice. An introduction to multivariate data analysis and experimental design (CAMO AS, Oslo, 2001).
  23. I. T. Jolliffe, Principal component analysis (Springer Science & Business Media, N.-Y., 2002).

版权所有 © Russian Academy of Sciences, 2023

##common.cookie##