Stability of collagen gel after uv irradiation

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Type I collagen is the most abundant extracellular matrix protein in the human body, as well as is the main structural element in tissues and regulates cellular functions. In lifetime, the organism and extracellular matrix components such as collagen are exposed to UV irradiation. The purpose of this work was to study the effect of UV irradiation on the stability and structure of collagen fibrils. It has been shown that UV irradiation has a stabilization effect on collagen gel at a concentration of 0.5 mg/ml. Scanning electron microscope images have shown that the diameter of the collagen fibrils is not changed after UV irradiation. The degree of spreading of cells cultured on collagen fibrils after UV irradiation is greater compared to those cultured on collagen fibrils unirradiated with UV light. UV irradiation promotes a shift of the collagen amide A band to lower frequency, indicating that it induces structural changes in collagen.

作者简介

Yu. Nashchekina

Institute of Cytology, Russian Academy of Sciences;Ioffe Institute, Russian Academy of Sciences

Email: nashchekina.yu@mail.ru
St. Petersburg, Russia

N. Trusova

Institute of Cytology, Russian Academy of Sciences

St. Petersburg, Russia

P. Nikonov

Institute of Cytology, Russian Academy of Sciences

St. Petersburg, Russia

A. Nashchekin

Ioffe Institute, Russian Academy of Sciences

N. Mikhailova

Institute of Cytology, Russian Academy of Sciences

St. Petersburg, Russia

参考

  1. A. Bailey and R. Paul, J. Soc. Leather Technol. Chem., 82, 104 (1998).
  2. S. Ricard, Perspect. Biol., 1, 3 (2011).
  3. S. Ricard-Blum, Perspect. Biol., 3, 1 (2011).
  4. Yu. А. Nashchekina, А. А. Starostina, N. А. Trusova, et al., J. Physics: Conf. Series, 1697, 012053 (2020).
  5. A. Amaro-Ortiz, B. Yan, and J. A. D'Orazio, Molecules, 19, 6202 (2014).
  6. Yu. A. Nashchekina, N. M. Yudintceva, P. O. Nikonov, et al., Bull. Exp. Biol. Med., 163, 123 (2017).
  7. M. G. Haugh, C. M. Murphy, R. C. McKiernan, et al., Tissue. Eng. Part A, 17, 1201 (2011).
  8. Y. Hu, L. Liu, W. Dan, et al., Int. J. Biol. Macromol., 55, 221 (2013).
  9. S. J. Hollister and R. D. T. Maddox, J. Biomater., 23, 4095 (2002).
  10. J. S. Pieper, T. Hafmans, J. H. Veerkamp, et al. Biomaterials, 21, 581 (2000).
  11. M. G. Haugh., PhD Thesis (Trinity Colledge, Dublin University, Ireland, 2008).
  12. D.-H. Lew, P. H-T. Liu, and D. P. Orgill, J. Biomed. Mater. Res. B. Appl. Biomater., 82, 51 (2007).
  13. L. H. Olde Damink, P. J. Dijkstra, M. J. van Luyn, et al., Biomaterials, 17, 765 (1996).
  14. N. Davidenko, D. V. Bax, C. F. Schuster, et al., Mater. Sci.: Mater. Med., 27,14 (2016).
  15. N. Metreveli, L. Namicheishvili, K. Jariashvili, et al., Int. J. Photoenergy, 76830, 1 (2006).
  16. M. P. Ohan, K. S. Weadock, and M. G. Dunn, J. Biomed. Mater. Res., 60, 384 (2002).
  17. G. Chandrakasan, D. A. Torchia, K. A. Piez, J. Biol. Chem., 251, 6062 (1976).
  18. O. H. Lowry, N. J. Rosbrough, A. L. Farr, and R. J. Randall, J. Biol. Chem., 193, 265. (1951).
  19. Y. Nashchekina, A. Chabina, A. Nashchekin, et al., Polymers, 12, 1042 (2020).
  20. A. Sionkowska, J. Photoch. Photobiol. B: Biology, 82, 9 (2006).
  21. A. Kaminska and A. Sionkowska, Pol. Degr. Stability, 51,19 (1996).

版权所有 © Russian Academy of Sciences, 2023

##common.cookie##