ВЛИЯНИЕ ВОСПАЛИТЕЛЬНОЙ АКТИВАЦИИ НА МИТОХОНДРИАЛЬНУЮ ФУНКЦИЮ И ЭКСПРЕССИЮ ГЕНОВ ИНГИБИТОРОВ АПОПТОЗА У КЛЕТОК ОСТРОГО МИЕЛОИДНОГО ЛЕЙКОЗА ТНР-1
- Авторы: Мещерякова Е.И1,2, Кобякова М.И1,3, Одинокова И.В1, Кузовлев А.В1,4, Фадеева И.С1, Фадеев Р.С1,3
-
Учреждения:
- Институт теоретической и экспериментальной биофизики РАН
- Институт биофизики клетки – обособленное подразделение ФИЦ «Пущинский научный центр биологических исследований РАН»
- Научно-исследовательский институт клинической и экспериментальной лимфологии – филиал ИЦиГ СО РАН
- Пущинский филиал Российского биотехнологического университета (РОСБИОТЕХ)
- Выпуск: Том 70, № 6 (2025)
- Страницы: 1123-1131
- Раздел: Биофизика клетки
- URL: https://journals.rcsi.science/0006-3029/article/view/354274
- DOI: https://doi.org/10.31857/S0006302925060093
- ID: 354274
Цитировать
Аннотация
Ключевые слова
Об авторах
Е. И Мещерякова
Институт теоретической и экспериментальной биофизики РАН; Институт биофизики клетки – обособленное подразделение ФИЦ «Пущинский научный центр биологических исследований РАН»
Email: elena.mesh2311@gmail.com
Пущино, Россия; Пущино, Россия
М. И Кобякова
Институт теоретической и экспериментальной биофизики РАН; Научно-исследовательский институт клинической и экспериментальной лимфологии – филиал ИЦиГ СО РАНПущино, Россия; Новосибирск, Россия
И. В Одинокова
Институт теоретической и экспериментальной биофизики РАНПущино, Россия
А. В Кузовлев
Институт теоретической и экспериментальной биофизики РАН; Пущинский филиал Российского биотехнологического университета (РОСБИОТЕХ)Пущино, Россия; Пущино, Россия
И. С Фадеева
Институт теоретической и экспериментальной биофизики РАНПущино, Россия
Р. С Фадеев
Институт теоретической и экспериментальной биофизики РАН; Научно-исследовательский институт клинической и экспериментальной лимфологии – филиал ИЦиГ СО РАНПущино, Россия; Новосибирск, Россия
Список литературы
- Premnath N. and Madanat Y. F. Paradigm shift in the management of acute myeloid leukemia—approved options in 2023 Cancers (Basel), 15 (11), 3002 (2023). doi: 10.3390/cancers15113002
- Luciano M., Krenn P. W., and Horejs-Hoeck J. The cytokine network in acute myeloid leukemia. Front. Immunol., 13, 1000996 (2022). doi: 10.3389/fimmu.2022.1000996
- Bruserud O., Reikvam H., and Brenner A. K. Toll-like receptor 4, osteoblasts and leukemogenesis; the lesson from acute myeloid leukemia. Molecules, 27 (3), 735 (2022). doi: 10.3390/molecules27030735
- Abdel Hammed M. R., Elgendy S. G., El-Mokhtar M. A., Sayed D., Mansour S. M., and Darwish A. M. T-lymphocytes expression of Toll-like receptors 2 and 4 in acute myeloid leukemia patients with invasive fungal infections. Mediterr. J. Hematol. Infect. Dis., 14 (1), e2022022 (2022). doi: 10.4084/MJHID.2022.022
- Sriskanthadevan S., Jeyaraju D. V., Chung T. E., Prabha S., Xu W., Skrtic M., Jhas B., Hurren R., Gronda M., Wang X., Jitkova Y., Sukhai M. A., Lin F. H., Maclean N., Laister R., C Goard. A., Mullen P. J., Xie S., Penn L. Z., Rogers I. M., Dick J. E., Minden M. D., and Schimmer A. D. AML cells have low spare reserve capacity in their respiratory chain that renders them susceptible to oxidative metabolic stress. Blood, 125 (13), 2120–2130 (2015). doi: 10.1182/blood-2014-08-594408
- Billingham L. K., Stoolman J. S., Vasan K., RodriguezA.E., Poor T. A., Szibor M., Jacobs H. T., Reczek C. R., Rashidi A., Zhang P., Miska J., and Chandel N. S. Mitochondrial electron transport chain is necessary for NLRP3 inflammasome activation. Nat. Immunol., 23, 692–704 (2022). doi: 10.1038/s41590-022-01185-3
- Lee I. and Huttemann M. Energy crisis: The role of oxidative phosphorylation in acute inflammation and sepsis. Biochim. Biophys. Acta, 1842 (9), 1579–1586 (2014). doi: 10.1016/j.bbadis.2014.05.031
- Allen B., Bottomly D., Kohnke T., Wang A., Lin H. Y., Johnson K., Kenna I., Streltsova A., Martin E., Chen R., Savoy L., Long N., Ryabinin P., Kurtz S. E., Eide C. A., Carlos A., Kaempf A., Liu T., Tognon C., Searles R., Piehowski P. D., Gosline S. J. C., Agarwal A., Chang B. H., Barton M., Druker B. J., McWeeney S. K., Majeti R., Tyner J. W., and Zhang H. A CEBPB/IL-1β/TNF-α feedback loop drives drug resistance to venetoclax and MDM2 inhibitors in monocytic leukemia. Blood, 145 (21), 2488–2506 (2025). doi: 10.1182/blood.2024028239
- Kobyakova M. I., Krasnov K. S., Krestinina O. V., Baburina Y. L., Senotov A. S., Lomovskaya Y. V., Meshcheriakova E. I., Lomovsky A. I., Zvyagina A. I., Pyatina K. V., Fadeeva I. S., and Fadeev R. S. Hypercellular proinflammatory microenvironment inhibits the etoposide-induced DNA damage in acute monocytic leukemia cells. Biochemistry (Mosc.), 90, 553–567 (2025). doi: 10.1134/S000629792560019X
- Kobyakova M. I., Senotov A. S., Krasnov K. S., Lomovskaya Y. V., Odinokova I. V., Kolotova A. A., Ermakov A. M., Zvyagina A. I., Fadeeva I. S., Fetisova E. I., Akatov V. S., and Fadeev R. S. Pro-inflammatory activation suppresses TRAIL-induced apoptosis of acute myeloid leukemia cells. Biochemistry (Mosc.), 89, 431–440 (2024). doi: 10.1134/S0006297924030040
- Kobyakova M., Lomovskaya Y., Senotov A., Lomovsky A., Minaychev V., Fadeeva I., Shtatnova D., Krasnov K., Zvyagina A., Odinokova I., Akatov V., and Fadeev R. The increase in the drug resistance of acute myeloid leukemia THP-1 cells in high-density cell culture is associated with inflammatory-like activation and antiapoptotic Bcl-2 proteins Int. J. Mol. Sci., 23 (14), 7881 (2022). doi: 10.3390/ijms23147881
- Sun Y., Liu J., G Ye., Gan F., Hamid M., Liao S., and Huang K. Protective effects of zymosan on heat stress-induced immunosuppression and apoptosis in dairy cows and peripheral blood mononuclear cells. Cell Stress Chaperones, 23 (5), 1069–1078 (2018). doi: 10.1007/s12192-018-0916-z
- Zhong F. M., Yao F. Y., Liu J., Zhang H. B., Li M. Y., Jiang J. Y., Xu Y. M., Yang W. M., S. Li Q., Zhang J., ChengY., Xu S., Huang B., and Wang X. Z. Inflammatory response mediates cross-talk with immune function and reveals clinical features in acute myeloid leukemia. Biosci. Rep., 42 (5), BSR20220647 (2022). doi: 10.1042/BSR20220647
- Chen D. W., Fan J. M., Schrey J. M., Mitchell D. V., Jung S. K., Hurwitz S. N., Perez E. B., Muraro M. J., Carroll M., Taylor D. M., and Kurre P. Inflammatory recruitment of healthy hematopoietic stem and progenitor cells in the acute myeloid leukemia niche. Leukemia, 38, 741–750 (2024). doi: 10.1038/s41375-024-02136-7
- Baumann A. M. and Ellegast J. M. Inflammatory signaling in the pathogenesis of acute myeloid leukemia. Hemasphere, 9 (8), e70188 (2025). doi: 10.1002/hem3.70188
- Minciacchi V. R., Karantanou C., Bravo J., Pereira R. S., Zanetti C., Krack T., Kumar R., Bankov K., Hartmann S., Huntly B. J. P., Meduri E., Ruf W., and Krause D. S. Differential inflammatory conditioning of the bone marrow by acute myeloid leukemia and its impact on progression. Blood Adv., 8 (19), 4983–4996 (2024). doi: 10.1182/bloodadvances.2024012867
- Romaschenko V. P., Zinovkin R. A., Galkin I. I., Zakharova V. V., Panteleeva A. A., Tokarchuk A. V., K. Lyamzaev G., Pletjushkina O. Y., Chernyak B. V., and Popova E. N. Low concentrations of uncouplers of oxidative phosphorylation prevent inflammatory activation of endothelial cells by tumor necrosis factor. Biochemistry (Mosc.), 80, 610–619 (2015). doi: 10.1134/S0006297915050144
- Jain A., Kim B. R., Yu W., Moninger T. O., Karp P. H., Wagner B. A., and Welsh M. J. Mitochondrial uncoupling proteins protect human airway epithelial ciliated cells from oxidative damage. Proc. Natl. Acad. Sci. USA., 121 (10), e2318771121 (2024). doi: 10.1073/pnas.2318771121
- Kierans S. J. and Taylor C. T. Glycolysis: A multifaceted metabolic pathway and signaling hub. J. Biol. Chem., 300 (11), 107906 (2024). doi: 10.1016/j.jbc.2024.107906
- Yang Y., Pu J., and Yang Y. Glycolysis and chemoresistance in acute myeloid leukemia. Heliyon, 10 (15), e35721 (2024). doi: 10.1016/j.heliyon.2024.e35721
- Zhang R., Jin W., and Wang K. Glycolysis-driven prognostic model for acute myeloid leukemia: Insights into the immune landscape and drug sensitivity. Biomedicines, 13, 834 (2025). doi: 10.3390/biomedicines13040834
- Song K., Li M., Xu X., Xuan X. L. I., Huang G., and Liu Q. Resistance to chemotherapy is associated with altered glucose metabolism in acute myeloid leukemia. Oncol. Lett., 12 (1), 334–342 (2016). doi: 10.3892/ol.2016.4600
- Cheng C., Yuan F., Chen X. P., Zhang W., Zhao X. L., Jiang Z. P., Zhou H. H., Zhou G., and Cao S. Inhibition of Nrf2-mediated glucose metabolism by brusatol synergistically sensitizes acute myeloid leukemia to Ara-C. Biomed. Pharmacother., 142, 111652 (2021). doi: 10.1016/j.biopha.2021.111652
- Zhang Y., Liu Y., and Xu X. Knockdown of LncRNAUCA1 suppresses chemoresistance of pediatric AML by inhibiting glycolysis through the microRNA-125a/hexokinase 2 pathway. J. Cell. Biochem., 119 (7), 6296–6308 (2018). doi: 10.1002/jcb.26899
- Liang J., Zhao W., Tong P., Li P., Zhao Y., Li H., and Liang J. Comprehensive molecular characterization of inhibitors of apoptosis proteins (IAPs) for therapeutic targeting in cancer. BMC Med. Genomics, 13, 7 (2020). doi: 10.1186/s12920-020-0661-x
- Kumar S., Fairmichael C., Longley D. B., and Turkington R. C. The multiple roles of the IAP superfamily in cancer. Pharmacol. Ther., 214, 107610 (2020). doi: 10.1016/j.pharmthera.2020.107610
- Popgeorgiev N., Sa J. D., Jabbour L., Banjara S., Nguyen T. T. M., Akhavan-E-Sabet A., Gadet R., Ralchev N., Manon S., Hinds M. G., Osigus H. J., Schierwater B., Humbert P. O., Rimokh R., Gillet G., and Kvansakul M. Ancient and conserved functional interplay between Bcl-2 family proteins in the mitochondrial pathway of apoptosis. Sci. Adv., 6 (40), abc4149 (2020). doi: 10.1126/sciadv.abc4149
- Vogler M., Braun Y., Smith V. M., Westhoff M. A., Pereira R. S., Pieper N. M., Anders M., Callens M., Vervliet T., Abbas M., Macip S., Schmid R., Bultynck G., and Dyer M. J. The BCL2 family: from apoptosis mechanisms to new advances in targeted therapy. Signal Transduct. Target. Ther., 10, 91 (2025). doi: 10.1038/s41392-025-02176-0
- Wong W. W., Vince J. E., Lalaoui N., Lawlor K. E., Chau D., Bankovacki A., Anderton H., Metcalf D., O’Reilly L., Jost P. J., Murphy J. M., Alexander W. S., Strasser A., Vaux D. L., and Silke J. cIAPs and XIAP regulate myelopoiesis through cytokine production in an RIPK1- and RIPK3-dependent manner. Blood, 123 (16), 2562–2572 (2014). doi: 10.1182/blood-2013-06-510743
- Lawlor K. E., Feltham R., Yabal M., Conos S. A., Chen K. W., Ziehe S., Gras C., Zhan Y., Nguyen T. A., Hall C., Vince A. J., Chatfield S. M., D'Silva D. B., Pang K. C., Schroder K., Silke J., Vaux D. L., Jost P. J., and Vince J. E. XIAP Loss Triggers RIPK3- and Caspase8-Driven IL-1β Activation and Cell Death as a Consequence of TLR-MyD88-Induced cIAP1-TRAF2 Degradation. Cell Rep., 20 (3), 668–682 (2017). doi: 10.1016/j.celrep.2017.06.073
- Fristedt Duvefelt C., Lub S., Agarwal P., Arngarden L., Hammarberg A., Maes K., Van Valckenborgh E., Vanderkerken K., and Jernberg Wiklund H., Oncotarget, 6, 20621 (2015). doi: 10.18632/oncotarget.4139
- Kim H. K., Kim S. A., Jung E. K., Lee K. H., Lee J. K., Kang H. C., Joo Y. E., and Lim S. C. Inhibitor of apoptosis protein Livin promotes tumor progression and chemoradioresistance in human anaplastic thyroid cancer. Oncol. Rep., 45, 18 (2021). doi: 10.3892/or.2021.7969
- Flores-Romero H., Landeta O., Ugarte-Uribe B., Cosentino K., Garcia-Porras M., Garcia-Saez A. J., and Basanez G. BFL1 modulates apoptosis at the membrane level through a bifunctional and multimodal mechanism showing key differences with BCLXL. Cell Death Differ., 26, 1880–1894 (2019). doi: 10.1038/s41418-018-0258-5
Дополнительные файлы


