ВОЗДЕЙСТВИЕ ТОРИЯ-232 НА БИОЛЮМИНЕСЦЕНТНУЮ ФЕРМЕНТАТИВНУЮ СИСТЕМУ И РАДИОПРОТЕКТОРНАЯ АКТИВНОСТЬ ГУМИНОВЫХ ВЕЩЕСТВ

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Изучение низкодозовых эффектов актуально в связи с расширением районов с антропогенной нагрузкой. Торий – один из фонообразующих элементов в природных экосистемах, его содержание может повышаться в окружающей среде в ходе добычи природных ресурсов и работы ТЭЦ. Особый интерес представляют биоэффекты тория в присутствии гуминовых веществ – природных детоксикантов. Целью работы является выявление нейтрализующего эффекта гуминовых веществ в условиях низкодозового воздействия тория-232 (< 0.04 Гр). В качестве модельного биологического объекта выбрана биолюминесцентная система ферментативных реакций, включающая бактериальную люциферазу и НАД(Ф)Н:ФМН-оксидоредуктазу. Выявлена активация биолюминесценции на начальном этапе воздействия тория-232 (до 50 мин) и увеличение содержания активных форм кислорода после 50 мин его воздействия. Показана связь интенсивности биолюминесценции и содержания активных форм кислорода (коэффициент корреляции –0.86). Присутствие гуминовых веществ нейтрализует активирующее действие тория и уменьшает содержание активных форм кислорода до контрольного значения. Продемонстрировано влияние гуминовых веществ на скорость НАДН-зависимого ферментативного редокс-процесса. Полученные результаты вносят вклад в понимание молекулярных механизмов воздействия тория-232 и нейтрализации его влияния на ферментативные процессы.

Об авторах

Т. В Рожко

Красноярский государственный медицинский университет им. проф. В.Ф. Войно-Ясенецкого Минздрава России

Красноярск, Россия

О. В Колесник

Институт биофизики СО РАН – обособленное подразделение ФИЦ «Красноярский научный центр Сибирского отделения РАН»; Сибирский федеральный университет

Email: olga.kolesnik.krsk@gmail.com
Красноярск, Россия; Красноярск, Россия

А. С Сачкова

Томский политехнический университет

Томск, Россия

Н. Ю Романова

Красноярский государственный медицинский университет им. проф. В.Ф. Войно-Ясенецкого Минздрава России

Красноярск, Россия

Д. И. Стом

Байкальский музей СО РАН

Листвянка, Россия

Н. С Кудряшева

Институт биофизики СО РАН – обособленное подразделение ФИЦ «Красноярский научный центр Сибирского отделения РАН»; Сибирский федеральный университет

Красноярск, Россия; Красноярск, Россия

Список литературы

  1. Ali Y. F, Cucinotta F. A., Ning-Ang L., and Zhou G. Cancer Risk of Low Dose Ionizing Radiation. Front. Phys., 8, 234 (2020). doi: 10.3389/fphy.2020.00234
  2. Kulahci F. and Cicek S. On the determination of transportation, range and distribution characteristics of Uranium238, Thorium-232 and Potassium-40: a critical review. Environ. Earth Sci., 78 (24), 721 (2019). doi: 10.1007/s12665-019-8736-8
  3. Phaniendra A., Jestadi D. B., and Periyasamy L. Free radicals: properties, sources, targets, and their implication in various diseases. Indian J. Clin. Biochem., 30 (1), 11–26 (2015). doi: 10.1007/s12291-014-0446-0
  4. Zuo L., Zhou T., Pannell B. K., Ziegler A. C., and BestT. M. Biological and physiological role of reactive oxygen species–the good, the bad and the ugly. Acta Physiol., 214 (3), 329–348 (2015). doi: 10.1111/apha.12515
  5. Жерин И. И. и Амелина Г. Н. Торий. в кн. Химия тория, урана, плутония, под ред. В. А. Матюха и О. В. Водянкина (Изд. ТПУ, Томск, 2010), сс. 19–24.
  6. Hassan S. S. M., Rahman E. M. A. R, ElSubruiti G. M., Kamel A. H., and Diab H. M. Removal of Uranium-238, Thorium-232, and Potassium-40 from Wastewater via Adsorption on Multiwalled Carbon Nanotubes. ACS Omega, 7 (14), 12342–12353 (2022). doi: 10.1021/acsomega.2c00819
  7. Chaudhury D., Sen U., Sahoo B. K., Bhat N. N., Kumara S., Karunakara N., Biswas S., Shenoy S., and Bose B. Thorium promotes lung, liver and kidney damage in BALB/c mouse via alterations in antioxidant systems. Chem. Biol. Interact., 363, 109977 (2022). doi: 10.1016/j.cbi.2022.109977
  8. Bulich A. A. and Isenberg D. L. Use of the luminescent bacterial system for the rapid assessment of aquatic toxicity. ISA Trans., 20 (1), 29 (1981).
  9. Abbas M., Adil M., Ehtisham-Ul-Haque S., Munir B., Yameen M., Ghaffar A. Shar G. A., Tahir M. A., and Iqbal M. Vibrio fischeri bioluminescence inhibition assay for ecotoxicity assessment: A review. Sci. Total Environ., 626, 1295–1309 (2018). doi: 10.1016/j.scitotenv. 2018.01.066
  10. Ismailov A. D. and Aleskerova L. E. Photobiosensors containing luminescent bacteria. Biochemistry, 80, 733–744 (2015). doi: 10.1134/S0006297915060085
  11. Ventura F. F., Mendes L. F., Oliveira A. G., Bazito R. C., Bechara E. J. H., Freire R. S., and Stevani C. S. Evaluation of Phenolic Compound Toxicity Using a Bioluminescent Assay with the Fungus Gerronema viridilucens. Environ. Toxicol. Chem., 39 (8), 1558–1565 (2020). doi: 10.1002/etc.4740
  12. Li Y., He X., Zhu W. Li H., and Wang W. Bacterial bioluminescence assay for bioanalysis and bioimaging. Anal. Bioanal. Chem., 414 (1), 75–83 (2022). doi: 10.1007/s00216-021-03695-9
  13. Syed A. J. and Anderson J. C. Applications of bioluminescence in biotechnology and beyond. Chem. Soc. Rev., 50, 5668–5705 (2021). doi: 10.1039/D0CS01492C
  14. Voon C. H., Yusop N. M., and Khor S. M. The stateofthe-art in bioluminescent whole-cell biosensor technology for detecting various organic compounds in oil and grease content in wastewater: From the lab to the field. Talanta, 241, 123271 (2022). doi: 10.1016/j.talanta.2022.123271
  15. Ali S. A., Mittal D., and Kaur G. In-situ monitoring of xenobiotics using genetically engineered whole-cellbased microbial biosensors: recent advances and outlook. World J. Microbiol. Biotechnol., 37, 81 (2021); doi: 10.1007/s11274-021-03024-3
  16. Girotti S., Ferri E. N., Fumo M. G., and Maolini E. Monitoring of environmental pollutants by bioluminescent bacteria. Anal. Chim. Acta, 608 (1), 2–29 (2008). doi: 10.1016/j.aca.2007.12.008
  17. Kudryasheva N. S. and Rozhko T. V. Effect of low-dose ionizing radiation on luminous marine bacteria: radiation hormesis and toxicity. J. Environ. Radioact., 142, 68–77 (2015). doi: 10.1016/j.jenvrad.2015.01.012
  18. Kolesnik O. V., Rozhko T. V., and Kudryasheva N. S. Marine Bacteria under Low-Intensity Radioactive Exposure: Model Experiments Int. J. Mol. Sci., 24 (1), 410 (2023). doi: 10.3390/ijms24010410
  19. Кудряшева Н. С., Кратасюк В. А. и Есимбекова Е. Н. Взаимодействие веществ в биолюминесцентных системах как основа экологического мониторинга. В кн. Физико-химические основы биолюминесцентного анализа, под ред. А. Г. Сизых (Краснояр. гос. ун-т., Красноярск, 2002), сс. 63–84.
  20. Esimbekova E., Kratasyuk V., and Shimomura O. Application of enzyme bioluminescence in ecology. In Advances in Biochemical Engineering/Biotechnology, Ed. by G. Thouand and R. Marks (Berlin, Heidelberg, Springer, 2014), pp. 67–109. doi: 10.1007/978-3-66243385-0_3
  21. Esimbekova E. N., Torgashina I. G., Kalyabina V. P., and Kratasyuk V. A. Enzymatic Biotesting: Scientific Basis and Application. Contem. Probl. Ecol., 14, 290–304 (2021). doi: 10.1134/S1995425521030069
  22. Roda A., Guardigli M., Michelini E., and Mirasoli M. Bioluminescence in analytical chemistry and in vivo imaging. Trends Analyt. Chem., 28 (3), 307–322 (2009). doi: 10.1016/j.trac.2008.11.015
  23. Matsumoto H., Hamada N., Takahashi A. Kobayashi Y., and Ohnishi T. Vanguards of Paradigm Shift in Radiation Biology: Radiation-Induced Adaptive and Bystander Responses. J. Radiat. Res., 48. 97–106 (2007). doi: 10.1269/jrr.06090
  24. Smith R. W., Wang J., Schultke E., Seymour C. V., Brauer-Krisch E., Laissue J. A., Blattmann H., and Mothersill C. E. Proteomic changes in the rat brain induced by homogenous irradiation and by the bystander effect resulting from high energy synchrotron X-ray microbeams. Int. J. Radiat. Biol., 89, 118–127 (2013). doi: 10.3109/09553002.2013.732252
  25. Колупаев Ю. Е. Активные формы кислорода в растениях при действии стрессоров: образование и возможные функции. Вестн. Харьковского национального аграрного ун-та. Сер. Биология, 3 (12), 6–26 (2007).
  26. Su Y., Song H., and Lv Y. Recent advances in chemiluminescence for reactive oxygen species sensing and imaging analysis. Microchem. J., 146, 83–97 (2019). doi: 10.1016/j.microc.2018.12.056
  27. Griendling K. K., Touyz R. M., Zweier J. L., Diaklov S., Chilian W., Chen Y.-R., Harrison D. G., and Bhatnagar A. Measurement of Reactive Oxygen Species, Reactive Nitrogen Species, and Redox-Dependent Signaling in the Cardiovascular System. Circ. Res., 119 (5), 39–75 (2016). doi: 10.1161/RES.0000000000000110
  28. Suzen S., Gurer-Orhan H. and Saso L. Detection of Reactive Oxygen and Nitrogen Species by Electron Paramagnetic Resonance (EPR) Technique. Molecules, 22 (1), 181 (2017). doi: 10.3390/molecules22010181
  29. Sushko E. S., Vnukova N. G., Churilov G. N., and Kudryasheva N. S. Endohedral Gd-Containing Fullerenol: Toxicity, Antioxidant Activity, and Regulation of Reactive Oxygen Species in Cellular and Enzymatic Systems. Int. J. Mol. Sci., 23 (9), 5152 (2022). doi: 10.3390/ijms23095152
  30. Kicheeva A. G., Sushko E. S., Bondarenko L. S., Kydralieva K. A., Pankratov D. A., Tropskaya N. S., Dzeranov A. A., Dzhardimalieva G. I., Zarelli M., and Kudryasheva N. S. Functionalized Magnetite Nanoparticles: Characterization, Bioeffects, and Role of Reactive Oxygen Species in Unicellular and Enzymatic Systems. Int. J. Mol. Sci., 24 (2), 1133 (2023). doi: 10.3390/ijms24021133
  31. Stepin E. A., Sushko E. S., Vnukova N. G., Churilov G. N., Rogova A. V., Tomilin F. N., and Kudryasheva N. S. Effects of Endohedral Gd-Containing Fullerenols with a Different Number of Oxygen Substituents on Bacterial Bioluminescence. Int. J. Mol. Sci., 25 (2), 708 (2024). doi: 10.3390/ijms25020708
  32. Selivanova M. A., Rozhko T. V., Devyatovskaya A. N., and Kudryasheva N. S. Comparison of chronic lowdose effects of alpha- and beta-emitting radionuclides on marine bacteria. Cent. Eur. J. Biol., 9 (10), 951–959 (2014). doi: 10.2478/s11535-014-0331-0
  33. Alexandrova M., Rozhko T., Vydryakova G., and Kudryasheva N. Effect of americium-241 on luminous bacteria. Role of peroxides. J. Environ. Radioact., 102, 407–411 (2011). doi: 10.1016/j.jenvrad.2011.02.011
  34. Azzam E. I., Jay-Gerlin J.-P., and Pain D. Ionizing radiationinduced metabolic oxidative stress and prolonged cell injury. Cancer Lett., 327 (1-2), 48–60 (2012). doi: 10.1016/j.canlet.2011.12.012
  35. Rozhko T. V., Nogovitsyna E. I., Badun G. A., Lukyanchuk A. N., and Kudryasheva N. S. Reactive Oxygen Species and low-dose effects of tritium on bacterial cells. J. Environ. Radioact., 208-209, 106035 (2019). doi: 10.1016/j.jenvrad.2019.106035
  36. Rozhko T. V., Kolesnik O. V., Badun G. A., Stom D. I., and Kudryasheva N. S. Humic Substances Mitigate the Impact of Tritium on Luminous Marine Bacteria. Involvement of Reactive Oxygen Species. Int. J. Mol. Sci., 21 (18), 6783 (2020). doi: 10.3390/ijms21186783
  37. Kolesnik O. V., Rozhko T. V., Lapina M. A., Solovyev V. S., Sachkova A. S., and Kudryasheva N. S. Development of Cellular and Enzymatic Bioluminescent Assay Systems to Study Low-Dose Effects of Thorium. Bioengineering, 8 (12), 194 (2021). doi: 10.3390/bioengineering8120194
  38. Trevisan S., Francioso O., Quaggiotti S., and Nardi S. Humic substances biological activity at the plant-soil interface. Plant Signal Behav., 5 (6), 635–643 (2010). doi: 10.4161/psb.5.6.11211
  39. Lipczynska-Kochany E. Humic substances, their microbial interactions and effects on biological transformations of organic pollutants in water and soil: A review. Chemosphere, 202, 420–437 (2018). doi: 10.1016/j.chemosphere.2018.03.104
  40. Shah Z. H., Rehman H. M., Akhtar T., Alsamadany H., Hamooh B. T., Mujtaba T., Daur I., Zahrani Y. A., Alzahrani H. A. S., Ali S., Yang S. H., and Chung G. Humic Substances: Determining Potential Molecular Regulatory Processes in Plants. Front. Plant Sci., 9, 263 (2018). doi: 10.3389/fpls.2018.00263
  41. Kudryasheva N. S., Stom D. I., and Tarasova A. S. Antioxidant activity of humic substances via bioluminescent monitoring in vitro. Environ. Sci. Pollut. Res., 22, 155 (2015). doi: 10.1007/s10661-015-4304-1
  42. Bondareva L. and Kudryasheva N. Direct and Indirect Detoxification Effects of Humic Substances. Agronomy, 11 (2), 198 (2021). doi: 10.3390/agronomy11020198
  43. Klocking R. and Helbig B. Humic Substances, Medical Aspects and Applications of. In Biopolymers for medical and pharmaceutical applications, Ed. by A. Steinbuchel and M. Hofrichter (WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2005), pp. 3−16. doi: 10.1002/3527600035.bpol1013
  44. Жилин Д. М. Исследование реакционной способности и детоксицирующих свойств гумусовых кислот по отношению к соединениям ртути (II). Дис. … канд. хим. наук (Моск. гос. ун-т имени М. В. Ломоносова, М., 1998).
  45. Rozhko T., Bondareva L., Mogilnaya O., Vydryakova G. Bolsunovsky A., Stom D., and Kudryasheva N. S. Detoxification of AM-241 solutions by humic substances: bioluminescent monitoring. Anal. Bioanal. Chem., 400 (2), 329–334 (2011). doi: 10.1007/s00216010-4442-9
  46. Goel P. and Dhingra M. Humic Substances: Prospects for Use in Agriculture and Medicine. In Humic Substances, Ed. by A. Makan (London, IntechOpen, 2021). doi: 10.5772/intechopen.99651
  47. Shkarupa V. M. and Klymenko S. V. Radioprotective properties of sodium humate in radiation-induced mutagenesis in cultured lymphocytes of thyroid cancer patients. Exp. Oncol., 38 (2), 108–111 (2016). doi: 10.31768/2312-8852.2016.38(2):108-111
  48. Скрипкина Т. С. Механохимическая модификация структуры гуминовых кислот для получения комплексных соединений. Дис. … канд. хим. наук (ИХТТМ СО РАН, Новосибирск, 2018).
  49. Gmurman V. Fundamentals of Probability Theory and Mathematical Statistics (American Elsevier Publishing Co., 1968).
  50. Calabrese E. J. Hormesis: a fundamental concept in biology. Microb. Cell., 1 (5), 145–149 (2014). doi: 10.15698/mic2014.05.145
  51. Calabrese E. J. and Selby P. B. Comet assay and hormesis. Environ Pollut., 341, 122929 (2024). doi: 10.1016/j.envpol.2023.122929
  52. Nemtseva E. V. and Kudryasheva N. S. The mechanism of electronic excitation in the bacterial bioluminescent reaction. Russ. Chem. Rev., 76 (1), 101–112 (2007). doi: 10.1070/RC2007v076n01ABEH003648
  53. Hastings J. W. and Gibson Q. H. Intermediates in the Bioluminescent Oxidation of Reduced Flavin Mononucleotide. J. Biol. Chem., 238 (7), 2537–2554 (1963). doi: 10.1016/s0021-9258(19)68004-x
  54. Петушков В. Н., Родионова Н. С. и Белобров П. И. Изучение эффективности работы биферментной системы NADH:FMN- оксидоредкутаза-люцифераза светящихся бактерий. Биохимия, 50 (3), 401–405 (1985).
  55. Tu S. C. Activity coupling and complex formation between bacterial luciferase and flavin reductases. Photochem. Photobiol. Sci., 7, 183–188 (2008). doi: 10.1039/B713462B
  56. O. S. Sutormin, E. V. Nemtseva, D. V. Gulnov, Sukovatyi L. A., Tyrtyshnaya Y. S., Lisitsa A. E., and Kratasyuk V. A. Coupling of NAD(P)H:FMN-oxidoreductase and luciferase from luminous bacteria in a viscous medium: Finding the weakest link in the chain. Photochem. Photobiol., 100 (2), 465–476 (2024). doi: 10.1111/php.13845

© Российская академия наук, 2004

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах