ИССЛЕДОВАНИЕ ВЫЖИВАЕМОСТИ ОПУХОЛЕВЫХ КЛЕТОК ЛИНИИ А549 ПРИ ОБЛУЧЕНИИ ПРОТОННЫМ ПУЧКОМ ВО ФЛЭШ- И СТАНДАРТНОМ РЕЖИМАХ

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Флэш-терапия – инновационный метод облучения, который обеспечивает подведение лечебной дозы к патологическому очагу за времена порядка нескольких десятков миллисекунд. В таком режиме облучения уменьшается степень повреждения нормальных тканей, окружающих опухоль и попадающих под действие излучения, в то же время воздействие на раковые клетки сохраняется практически на прежнем уровне, что улучшает перспективу локального контроля опухоли при меньшей частоте возникновения побочных эффектов. На сегодняшний день точные радиобиологические механизмы, лежащие в основе флэш-эффекта, до конца неясны. В статье приведены результаты работы по формированию высокоинтенсивного пучка протонов с энергией 660 МэВ от ускорителя «фазотрон» Объединенного института ядерных исследований (Дубна), предназначенного для проведения радиобиологических исследований при облучении методом флэш-терапии клеточных культур и малых лабораторных животных (мыши, крысы). Также проведено сравнение выживаемости клеток линии А549 при облучении протонным пучком в двух режимах: флэш и стандартном. Обнаружено различие в изменении выживаемости клеток А549, облученных в флэш- и стандартном режимах. Величина флэш-эффекта представлена фактором изменения дозы.

Об авторах

А. В Рзянина

Объединенный институт ядерных исследований

Email: rzjanina@mail.ru
Дубна, Россия

Г. В Мицын

Объединенный институт ядерных исследований

Дубна, Россия

А. В Агапов

Объединенный институт ядерных исследований

Дубна, Россия

Е. А Грицкова

Объединенный институт ядерных исследований

Дубна, Россия

С. С Углова

Объединенный институт ядерных исследований

Дубна, Россия

В. Н Гаевский

Объединенный институт ядерных исследований

Дубна, Россия

К. Н Шипулин

Объединенный институт ядерных исследований

Дубна, Россия

И. Хасенова

Объединенный институт ядерных исследований

Дубна, Россия

Список литературы

  1. Favaudon V., Labarbe R., and Limoli C. L. Model studies of the role of oxygen in the FLASH effect. Med. Phys., 49 (3), 2068 (2022).
  2. Favaudon V., Caplier L., Monceau V., Pouzoulet F., Sayarath M., Fouillade C., Poupon M. F., Brito I., Hupé P., Bourhis J., Hall J., Fontaine J. J., and Vozenin M.C. Ultrahigh dose-rate flash irradiation increases the differential response between normal and tumor tissue in mice, Sci. Transl. Med., 6 (245), 245ra93 (2014). doi: 10.1126/scitranslmed.3008973
  3. Fouillade C., Curras-Alonso S., Giuranno L., Quelennec E., Heinrich S., Bonnet-Boissinot S., Beddok A., Leboucher S., Karakurt H. U., Bohec M., Baulande S., Vooijs M., Verrelle P., Dutreix M., LondoñoVallejo A., and Favaudon V. FLASH irradiation spares lung progenitor cells and limits the incidence of radioinduced senescence. Clin. Cancer Res., 26 (6), 1497–1506 (2020). doi: 10.1158/1078-0432.CCR-19-1440
  4. Vozenin M. C., De Fornel P., Petersson K., Favaudon V., Jaccard M., Germond J. F., Petit B., Burki M., Ferrand G., Patin D., Bouchaab H., Ozsahin M., Bochud F., Bailat C., Devauchelle P., and Bourhis J. The advantage of FLASH radiotherapy confirmed in minipig and cat-cancer patients. Clin. Cancer Res., 25 (1), 35–42 (2019). doi: 10.1158/1078-0432.CCR-17-3375
  5. Bourhis J., Sozzi W. J., Jorge P. G., Gaide O., Bailat C., Duclos F., Patin D., Ozsahin M., Bochud F., Germond J. F., Moeckli R., and Vozenin M. C. Treatment of a first patient with FLASH-radiotherapy. Radiother. Oncol., 139, 18–22 (2019). doi: 10.1016/j.radonc.2019.06.019
  6. Hornsey S. and Bewley D. K. Hypoxia in mouse intestine induced by electron irradiation at high dose-rates. Int. J. Radiat. Biol. Relat. Stud. Phys. Chem., Med., 19 (5), 479 (1971).
  7. Weiss H, Epp E. R., Heslin J. M., Ling C. C., and Santomasso A. Oxygen depletion in cells irradiated at ultrahigh dose-rates and at conventional dose-rates. Int. J. Radiat. Biol., 26 (1), 17–29 (1974). doi: 10.1080/09553007414550901
  8. Epp E. R., Weiss H., Djordjevic B., and Santomasso A. The radiosensitivity of cultured mammalian cells exposed to single high intensity pulses of electrons in various concentrations of oxygen. Radiat. Res., 52 (2), 324 (1972).
  9. Gao F., Yang Y., Zhu H., Wang J., Xiao D., Zhou Z., Dai T., Zhang Y., Feng G., Li J., Lin B., Xie G., Ke Q., Zhou K., Li P., Shen X., Wang H., Yan L., Lao C., Shan L., Li M., Lu Y., Chen M., Feng S., Zhao J., Wu D., and Du X. First demonstration of the FLASH effect with ultrahigh dose rate high-energy X-rays. Radiother. Oncol., 166, 44–50 (2022). doi: 10.1016/j.radonc.2021.11.004
  10. Loo B. W., Schuler E., Lartey F. M., Rafat M., King G. J., Trovati G. J., Koong A. C., and Maxim P. G. Delivery of ultra-rapid flash radiation therapy and demonstration of normal tissue sparing after abdominal irradiation of mice, Int. J. Radiat. Oncol., 98, E16 (2017).
  11. Simmons D. A., Lartey F. M., Schüler E., Rafat M., King G., Kim A., Ko R., Semaan S., Gonzalez S., Jenkins M., Pradhan P., Shih Z., Wang J., von Eyben R., Graves E. E., Maxim P. G., Longo F. M., and Loo B. W., Jr. Reduced cognitive deficits after FLASH irradiation of whole mouse brain are associated with less hippocampal dendritic spine loss and neuroinflammation. Radiother Oncol., 139, 4–10 (2019). doi: 10.1016/j.radonc.2019.06.006
  12. Singers S. B., Krzysztof S. M., Ankjærgaard C., Johansen J., Andersen C. E., Kanouta E., Overgaard C., Grau C., and Poulsen P. In vivo validation and tissue sparing factor for acute damage of pencil beam scanning proton FLASH, Radiother. Oncol., 167, 109–115 (2022). doi: 10.1016/j.radonc.2021.12.022
  13. Montay-Gruel P., Acharya M. M., Gonçalves Jorge P., Petit B., Petridis I. G., Fuchs P., Leavitt R., Petersson K., Gondré M., Ollivier J., Moeckli R., Bochud F., Bailat C., Bourhis J., Germond J. F., Limoli C. L., and Vozenin M. C. Hypofractionated FLASH-RT as an Effective Treatment against Glioblastoma that Reduces Neurocognitive Side Effects in Mice. Clin. Cancer Res., 27 (3), 775–784 (2021). doi: 10.1158/1078-0432.CCR-20-0894
  14. Levy K., Natarajan S., Wang J., Chow S., Eggold J. T., Loo P. E., Manjappa R., Melemenidis S., Lartey F. M., Schüler E., Skinner L., Rafat M., Ko R., Kim A., H AlRawi D., von Eyben R., Dorigo O., Casey K. M., Graves E. E., Bush K., Yu A. S., Koong A. C., Maxim P. G., Loo B. W. Jr, Rankin E. B. Abdominal FLASH irradiation reduces radiation-induced gastrointestinal toxicity for the treatment of ovarian cancer in mice. Sci Rep., 10 (1), 21600 (2020). DOI: 10.1038/ s41598-020-78017-7
  15. Вайнсон А. А. и Соловьева Е. В., Флэш-эффект в лучевой терапии злокачественных новообразований и поиски его радиобиологического объяснения. Онкологич. журн.: лучевая диагностика, лучевая терапия, 5 (4), 9 (2022).
  16. Bourhis J., Sozzi W. J., Jorge P. G., Gaide O., Bailat C., Duclos F., Patin D., Ozsahin M., Bochud F., Germond J. F., Moeckli R., and Vozenin M. C. Treatment of a first patient with FLASH-radiotherapy. Radiother. Oncol., 139, 18–22 (2019). DOI: 10.1016/ j.radonc.2019.06.019
  17. Durante M., Bräuer-Krisch E., and Hill M. Faster and safer? FLASH ultra-high dose rate in radiotherapy. Br. J. Radiol., 91, 20170628 (2018).
  18. Adrian G., Konradsson E., Lempart M., Bäck S., Ceberg C., and Petersson K. The FLASH effect depends on oxygen concentration, Br. J. Radiol., 93, 20190702 (2020).
  19. Spitz D. R., Buettner G. R., Petronek M. S., St-Aubin J. J., Flynn R. T., Waldron T. J., and Limoli C. L., An integrated physico-chemical approach for explaining the differential impact of FLASH versus conventional dose rate irradiation on cancer and normal tissue responses. Radiother. Oncol., 139 (16), 23 (2019).
  20. Petersson K., Adrian G., Butterworth K., and McMahon S. J. A quantitative analysis of the role of oxygen tension in flash radiation therapy. Int. J. Radiat. Oncol. Biol. Phys., 107, 539 (2020).
  21. Wardman P. Radiotherapy using high-intensity pulsed radiation beams (flash): a radiation-chemical perspective. Radiat. Res., 194, 607 (2020).
  22. Агапов А. В., Гаевский В. Н., Лучин Е. И., Мицын Г. В., Молоканов А. Г., Цейтлина М. А., Швидкий С. В. и Шипулин К. Н. 50 лет со дня облучения первого пациента протонным пучком в Объединенном институте ядерных исследований (Дубна). Мед. физика, 4 (76), 121 (2017).
  23. Карамышев В., Бунятов К. С., Гибинский А. Л., Гурский С. В., Карамышева Г. А., Ляпин И. Д., Малинин В. А., Попов Д. В., Ширков Г. Д. и Ширков С. Г. Исследования и разработка сверхпроводящего циклотрона SC230 для протонной терапии. Письма в ЭЧАЯ, 18 (1), 73 (2021).
  24. Официальный сайт GafChromic. URL:http://www.gafchromic.com/
  25. Официальный сайт PTW The Dosimetry Company. URL: https://www.ptwdosimetry.com/en
  26. Wilson J. D., Hammond E. M., Higgins G. S., and Petersson K. Ultra-high dose rate (flash) radiotherapy: silver bullet or fool’s gold? Front. Oncol., 9, 1563 (2020).
  27. Montay-Gruel P., Petersson K., Jaccard M., Boivin G., Germond J.-F., Petit B., Doenlen R., Favaudon V., Bochud F., Bailat C., Bourhis J., Vozenin M. C. Irradiation in a flash: unique sparing of memory in mice after whole brain irradiation with dose rates above 100 Gy/s, Radiother. Oncol., 124, 365–369 (2017). doi: 10.1016/j.radonc.2017.05.003
  28. Montay-Gruel P., Acharya M. M., Petersson K., Alikhani L., Yakkala C., Allen B. D., Ollivier J., Petit B., Jorge P. G., Syage A. R., Nguyen T. A., Baddour A. A. D., Lu C., Singh P., Moeckli R., Bochud F., Germond J. F., Froidevaux P., Bailat C., Bourhis J., Vozenin M. C., and Limoli C. L. Long-term neurocognitive benefits of FLASH radiotherapy driven by reduced reactive oxygen species. Proc. Natl. Acad. Sci. USA, 116 (22), 10943–10951 (2019). doi: 10.1073/pnas.1901777116
  29. Fouillade C., Curras-Alonso S., Giuranno L., Quelennec E., Heinrich S., Bonnet-Boissinot S., Beddok A., Leboucher S., Karakurt H. U., Bohec M., Baulande S., Vooijs M., Verrelle P., Dutreix M., LondoñoVallejo A., and Favaudon V. FLASH irradiation spares lung progenitor cells and limits the incidence of radioinduced senescence. Clin. Cancer Res., 26 (6), 1497– 1506 (2020). doi: 10.1158/1078-0432.CCR-19-1440
  30. Buonanno M., Grilj V., and Brenner D. J. Biological effects in normal cells exposed to flash dose rate protons. Radiother. Oncol., 139, 51 (2019).
  31. Khan S., Bassenne M., Wang J., Manjappa R., Melemenidis S., Breitkreutz D. Y., Maxim P. G., Xing L., Loo B. W. Jr, and Pratx G. Multicellular Spheroids as In Vitro Models of Oxygen Depletion During FLASH Irradiation. Int. J. Radiat. Oncol. Biol. Phys., 110 (3), 833–844 (2021). doi: 10.1016/j.ijrobp.2021.01.050
  32. Venkatesulu B. P., Sharma A., Pollard-Larkin J. M., Sadagopan R., Symons J., Neri S., Singh P. K., Tailor R., Lin S. H., and Krishnan S. Ultra high dose rate (35Gy/sec) radiation does not spare the normal tissue in cardiac and splenic models of lymphopenia and gastrointestinal syndrome. Sci Rep., 9 (1), 17180 (2019). doi: 10.1038/s41598-019-53562-y
  33. Cygler J., Klassen N. V., Ross C. K., Bichay T. J., and Raaphorst G. P. The survival of aerobic and anoxic human glioma and melanoma cells after irradiation at ultrahigh and clinical dose rates, Radiat. Res., 140, 79 (1994).
  34. Zackrisson B. U., Nystrom U. H., and Ostbergh P. Biological response in vitro to pulsed high dose rate electrons from a clinical accelerator. Acta. Oncol. (Madrid), 30, 747 (1991).
  35. Nias A. H. W., Swallow A. J., Keene J. P., and Hodgson B. Survival of HeLa cells from 10 nanosecond pulses of electrons, Int. J. Radiat. Biol., 17, 595 (1970).
  36. Berry R. J. and Stedeford J. B. H. Reproductive survival of mammalian cells after irradiation at ultra-high doserates: further observations and their importance for radiotherapy. Br. J. Radiol., 45, 171 (1972).
  37. Town C. D. Effect of high dose rates on survival of mammalian cells. Nature, 215, 847 (1967).
  38. Berry R. J., Hall E. J., Forster D. W., Storr T. H., and Goodman M. J. Survival of mammalian cells exposed to x rays at ultra-high dose-rates. Br. J. Radiol., 42, 102 (1969).
  39. Guo Z., Buonanno M., Harken A., Zhou G., and Hei T. K. Mitochondrial damage response and fate of normal cells exposed to flash irradiation with protons. Radiat. Res., 197 (6), 569 (2022).
  40. Adrian G., Konradsson E., Beyer S., Wittrup A., Butterworth K. T., McMahon S. J., Ghita M., Petersson K., Ceberg C. Cancer cells can exhibit a sparing flash effect at low doses under normoxic in vitro-conditions. Front. Oncol., 29 (7), 686142 (2021).
  41. Auer S., Hable V., Greube C., Drexler G. A., Schmid T. E., Belka C., Dollinger G., Friedl A. A. Survival of tumor cells after proton irradiation with ultrahigh dose rates. Radiat. Oncol., 6, 139 (2011). doi: 10.1186/1748-717X-6-139
  42. Venkatesulu B. P., Sharma A., Pollard-Larkin J. M., Sadagopan R., Symons J., Neri S., Singh P. K., Tailor R., Lin S. H., and Krishnan S. Ultra high dose rate (35Gy/sec) radiation does not spare the normal tissue in cardiac and splenic models of lymphopenia and gastrointestinal syndrome. Sci Rep., 9 (1), 17180 (2019). doi: 10.1038/s41598-019-53562-y

© Российская академия наук, 2024

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах