A Deep Learning Approach to Predict Histone Variant Effects on Nucleosome Stability
- Autores: Bogdanova E.A1, Chernukhin A.V2, Matyushevskaya A.O1, Novoseletsky V.N3, Komarova G.A4, Shaytan A.K1,5
-
Afiliações:
- Faculty of Biology, Lomonosov Moscow State University
- Mendeleev University of Chemical Technology of Russia
- Shenzhen MSU-BIT University
- Faculty of Physics, Lomonosov Moscow State University
- Institute of Gene Biology, Russian Academy of Sciences
- Edição: Volume 70, Nº 6 (2025)
- Páginas: 1075-1085
- Seção: Molecular biophysics
- URL: https://journals.rcsi.science/0006-3029/article/view/354269
- DOI: https://doi.org/10.31857/S0006302925060046
- ID: 354269
Citar
Resumo
Sobre autores
E. Bogdanova
Faculty of Biology, Lomonosov Moscow State UniversityMoscow, Russia
A. Chernukhin
Mendeleev University of Chemical Technology of RussiaFaculty of Digital Technologies and Chemical Engineering Moscow, Russia
A. Matyushevskaya
Faculty of Biology, Lomonosov Moscow State UniversityMoscow, Russia
V. Novoseletsky
Shenzhen MSU-BIT UniversityFaculty of Biology Moscow, Russia
G. Komarova
Faculty of Physics, Lomonosov Moscow State UniversityMoscow, Russia
A. Shaytan
Faculty of Biology, Lomonosov Moscow State University; Institute of Gene Biology, Russian Academy of Sciences
Email: shaytan_ak@mail.bio.msu.ru
Moscow, Russia; Moscow, Russia
Bibliografia
- Pepenella S., Murphy K. J., and Hayes J. J. Intra- and inter-nucleosome interactions of the core histone tail domains in higher-order chromatin structure. Chromosoma, 123 (1), 3–13 (2014). doi: 10.1007/s00412-013-0435-8
- Chang H. W., Feofanov A. V., Lyubitelev A. V., Armeev G. A., Kotova E. Y., Hsieh F. K., Kirpichnikov M. P., Shaytan A. K., and Studitsky V. M. N-Terminal tails of histones H2A and H2B differentially affect transcription by RNA polymerase II in vitro. Cells, 11 (16), 2475 (2022). doi: 10.3390/cells11162475
- Kulaeva O., Gaykalova D., Pestov N., and Studitsky V. M. Mechanism of chromatin remodeling and recovery during passage of RNA polymerase II. Nat. Struct. Mol. Biol., 16 (12), 1272–1278 (2009). doi: 10.1038/nsmb.1689
- Luger K., Mader A. W., Richmond R. K., Sargent D. F., and Richmond T. J. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature, 389 (6648), 251–260 (1997). doi: 10.1038/38444
- Kamakaka R. T. and Biggins S. Histone variants: deviants? Genes Dev., 19 (3), 295–310 (2005). doi: 10.1101/gad.1272805
- Shi X., Fedulova A. S., Kotova E. Y., Maluchenko N. V., Armeev G. A., Chen Q., Prasanna C., Sivkina A. L., Feofanov A. V., Kirpichnikov M. P., Nordenskiold L., Shaytan A. K., and Studitsky V. M. Histone tetrasome dynamics affects chromatin transcription. Nucl. Acids Res., 53 (8), gkat356 (2025). doi: 10.1093/nar/gkat356
- Talbert P. B. and Henikoff S. Histone variants at a glance. J. Cell Sci., 134 (4), jcs244749 (2021). doi: 10.1242/jcs.244749
- Talbert P. B. and Henikoff S. Histone variants–ancient wrap artists of the epigenome. Nat. Rev. Mol. Cell Biol., 11 (4), 264–275 (2010). doi: 10.1038/nrm2861
- Tachiwana H., Kagawa W., Shiga T., Osakabe A., Miya Y., Saito K., Hayashi-Takanaka Y., Oda T., Sato M., Park S. Y., Kimura H. and Kurumizaka H. Crystal structure of the human centromeric nucleosome containing CENP-A. Nature, 476 (7359), 232–235 (2011). doi: 10.1038/nature10258
- Szenker E., Ray-Gallet D., and Almouzni G. The double face of the histone variant H3.3. Cell Res., 21 (3), 421–434 (2011). doi: 10.1038/cr.2011.14
- Hirano R., Arimura Y., Kujirai T., Shibata M., Okuda A., Morishima K., Inoue R., Sugiyama M., and Kurumizaka H. Histone variant H2A-B-H2B dimers are spontaneously exchanged with canonical H2A-H2B in the nucleosome. Commun. Biol., 4 (1), 191 (2021). doi: 10.1038/s42003-021-01707-z
- Kniazeva A. S., Armeev G. A., and Shaytan A. K. H2A-H2B Histone dimer plasticity and its functional implications. Cells, 11 (18), 2837 (2022). doi: 10.3390/cells11182837
- El Kennani S., Adrait A., Permiakova O., Hesse A. M., Ialy-Radio C., Ferro M., Brun V., Cocquet J., Govin J., and Pflieger D. Systematic quantitative analysis of H2A and H2B variants by targeted proteomics. Epigenetics Chromatin, 11 (1), 2 (2018). doi: 10.1186/s13072-017-0172-y
- Klein R. H. and Knoepfler P. S. Knockout tales: the versatile roles of histone H3.3 in development and disease. Epigenetics Chromatin, 16 (1), 38 (2023). doi: 10.1186/s13072-023-00512-8
- Darzynkiewicz Z. and Carter S. P. Thermal stability of nucleosomes studied in situ by flow cytometry: effect of ionic strength and n-butyrate. Exp. Cell Res., 180 (2), 551–556 (1989). doi: 10.1016/0014-4827(89)90082-7
- Berryhill C. A., Doud E. H., Hanquier J. N., Smith-Kinnaman W. R., McCourry D. L., Mosley A. L., and Cornett E. M. Protein thermal stability changes induced by the global methylation inhibitor 3-deazaneplanocin A (DZNep). Biomolecules, 14 (7), 817 (2024). doi: 10.3390/biom14070817
- Toth K., Gansen A., Hetey S., Szekvölgyi L., Nordenskiold L., and Langowski J. How histone modifications change nucleosome stability – FRET studies on single molecules and in bulk. Microsc. Microanal., 20 (S3), 1204–1205 (2014). doi: 10.1017/S1431927614007752
- Bogdanova E. A. and Novoseletsky V. N. ProBAN: Neural network algorithm for predicting binding affinity in protein-protein complexes. Proteins, 92 (9), 1127–1136 (2024). doi: 10.1002/prot.26700
- Liang X., Shan S., Pan L., Zhao D., He F., Liu Y., Li D., Jiang H., Huang L., Cai Y., Li G., Wang D., and Li H. Structural basis of H2A-Z recognition by SRCAP chromatin-remodeling subunit YL1. Nat. Struct. Mol. Biol., 23 (4), 317–323 (2016). doi: 10.1038/nsmb.3190
- Latrick C. M., Marek M., Ouararhni K., Papin C., Stoll I., Ignatyeva M., Oudet P., Hamiche A., Dimitrov S., and Romier C. Molecular basis and specificity of H2A-Z-H2B recognition and deposition by the histone chaperone YL1. Nat. Struct. Mol. Biol., 23 (4), 309–316 (2016). doi: 10.1038/nsmb.3189
- Hu Q., Botuyan M. V., Cui G., Zhao D., and Mer G. Mechanisms of Ubiquitin-Nucleosome Recognition and Regulation of 53BP1 Chromatin Recruitment by RNF168/169 and RAD18. Mol. Cell, 66 (4), 473–487.e9 (2017). doi: 10.1016/j.molcel.2017.04.009
- Huang Y., Sun L., Pierrakeas L., Trieu T., He H., Dai L., Wang Y., Zhang Z., Shan C., Pan L., Wang P., Zhou Z., Li W., and Wu C. Role of a DEF/T motif in histone H2A-H2B recognition and nucleosome editing. Proc. Natl. Acad. Sci. USA, 117 (7), 3543–3550 (2020). doi: 10.1073/pnas.1914313117
- Padavanni A., Sarkar P., Kim S.J., Cagatay T., Ji W., Flores S. K., Mackintosh S. G., Byrum S. D., Taverna S. D., Tackett A. J., Ranjan A., and Prasanth K. V. Importin-9 wraps around the H2A-H2B core to act as nuclear importer and histone chaperone. Elife, 8, e43630 (2019). doi: 10.7554/eLife.43630
- Luo Q., Wang B., Wu Z., Shang Z., Jiang Y., Luan Y., Wang Y., Wang H., Liu S., Wang Y., Zhang Z., Li G., and Wu C. NAPI-Related Protein 1 (NRP1) has multiple interaction modes for chaperoning histones H2A-H2B. Proc. Natl. Acad. Sci. USA, 117 (48), 30391–30399 (2020). doi: 10.1073/pnas.2011089117
- Wang Y., Liu S., Sun L., Liu S., Li W., and Wu C. Structural insights into histone chaperone Chz1-mediated H2A-Z recognition and histone replacement. PLoS Biol., 17 (5), e3000277 (2019). doi: 10.1371/journal.pbio.3000277
- Chen J., Lu Z., Gong W., Chen S., Li J., Wu Y., Wang Y., Hu J., Huang L., Tan M., Luo S., Li G., Li M., and Zhou X. Epstein-Barr virus protein BKRF4 restricts nucleosome assembly to suppress host antiviral responses. Proc. Natl. Acad. Sci. USA, 119 (37), e2203782119 (2022). doi: 10.1073/pnas.2203782119
- Ishiyama S., Nishiyama A., Saeki Y., Moritsugu K., Morimoto D., Yamaguchi L., Arai N., Matsumura R., Kawakami T., Mishima Y., Hojo H., Shirakawa M., Tanaka S., Ikegami T., Tajima S., Oda T., Sato M., Hirano T., Toga J., Wolberger C., Senda T., Nakanishi M., Kato H., Kojima H., Fukuyama T., Arita K., Noma K.I., Obuse C., Kihara H., Terawaki S., Sato M., Kobayashi A., Kikuchi A., Goto Y., Martens J. H. A., Kimura H., Ohkawa Y., Suetake I., Tsumoto K., and Tajima S. Structure of the Dnmt1 reader module complexed with a unique two-mono-ubiquitin mark on histone H3 reveals the basis for DNA methylation maintenance. Mol. Cell, 68 (2), 350–360.e7 (2017). doi: 10.1016/j.molcel.2017.09.037
- Korntner-Vetter M., Lefevre S., Hu X.W., George R., and Singleton M. R. Subunit interactions and arrangements in the fission yeast Mis16-Mis18-Mis19 complex. Life Sci. Alliance, 2 (4), e201900408 (2019). doi: 10.26508/lsa.201900408
- Hammond C. M., Bao H., Hendriks I.A., Carraro M., Garcia-Nieto A., Liu Y., Reverón-Gomez N., Spanos C., Chen L., Rappsilber J., Nielsen M. L., Patel D. J., and Groth A. DNAJC9 integrates heat shock molecular chaperones into the histone chaperone network. Mol. Cell, 81 (12), 2533–2548.e9 (2021). doi: 10.1016/j.molcel.2021.03.041
- Guillemette B. and Gaudreau L. Reuniting the contrasting functions of H2A.Z. Biochem. Cell Biol., 84 (4), 528–535 (2006). doi: 10.1139/o06-077
- Henikoff S. and Smith M. M. Histone variants and epigenetics. Cold Spring Harb. Perspect. Biol., 7 (1), a019364 (2015). doi: 10.1101/cshperspect.a019364
- Venkatesh S. and Workman J. L. Histone exchange, chromatin structure and the regulation of transcription. Nat. Rev. Mol. Cell Biol., 16 (3), 178–189 (2015). doi: 10.1038/nrm3941
- Abbott D. W., Ivanova V. S., Wang X., Bonner W. M., and Ausio J. Characterization of the stability and folding of H2A-Z chromatin particles: implications for transcriptional activation. J. Biol. Chem., 276 (45), 41945–41949 (2001). doi: 10.1074/jbc.M108217200
- Chen P., Zhao J., Wang Y., Wang M., Long H., Liang D., Huang L., Wen Z., Li W., Li X., Feng H., Zhao H., Zhu P., Li M., and Li G. H3.3 actively marks enhancers and primes gene transcription via opening higher-ordered chromatin. Genes Dev., 27 (19), 2109–2124 (2013). doi: 10.1101/gad.222174.113
- Kim J., Wei S., Lee J., Yue H., and Lee T.H. Single-molecule observation reveals spontaneous protein dynamics in the nucleosome. J. Phys. Chem., 120 (34), 8925–8931 (2016). doi: 10.1021/acs.jpcb.6b06235
- Osakabe A., Lorkovic Z.J., Kobayashi W., Tachiwana H., Yelagandula R., Kurumizaka H., and Berger F. Histone H2A variants confer specific properties to nucleosomes and impact on chromatin accessibility. Nucl. Acids Res., 46 (15), 7675–7685 (2018). doi: 10.1093/nar/gky540
- Rudnizky S., Bavly A., Malik O., Pnueli L., Melamed P. and Kaplan A. H2A.Z controls the stability and mobility of nucleosomes to regulate expression of the LH genes. Nat. Commun., 7, 12958 (2016). doi: 10.1038/ncomms12958
- Dai L., Xiao X., Pan L., Shi L., Xu N., Zhang Z., Feng X., Ma L., Dou S., Wang P., Zhu B., Li W., and Zhou Z. Recognition of the inherently unstable H2A nucleosome by Swc2 is a major determinant for unidirectional H2A-Z exchange. Cell Rep., 35 (8), 109183 (2021). doi: 10.1016/j.celrep.2021.109183
- Contrepois K., Coudereau C., Benayoun B. A., SchulerN., Roux P. F., Bischof O., Courbeyrette R., Carvalho C., Thuret J. Y., and Ma Z. Histone variant H2A-J accumulates in senescent cells and promotes inflammatory gene expression. Nat. Commun., 8, 14995 (2017). doi: 10.1038/ncomms14995
- Isermann A., Mann C., and Rube C. E. Histone variant H2A-J marks persistent DNA damage and triggers the secretory phenotype in radiation-induced senescence. Int. J. Mol. Sci., 21 (23), 9130 (2020). doi: 10.3390/ijms21239130
- Rube C. E., Baumert C., Schuler N., Isermann A., Schmal Z., Glanemann M., Mann C., and Scherthan H. Human skin aging is associated with increased expression of the histone variant H2A-J in the epidermis. NPJ Aging Mech. Dis., 7 (1), 7 (2021). doi: 10.1038/s41514-021-00060-z
- Tanaka H., Sato S., Koyama M., Kujirai T., and Kurumizaka H. Biochemical and structural analyses of the nucleosome containing human histone H2A-J. J. Biochem., 167 (4), 419–427 (2020). doi: 10.1093/jb/mvz109
- Tanaka Y., Tawaramoto-Sasamuma M., Kawaguchi S., Ohta T., Yoda K., Kurumizaka H., and Yokoyama S. Expression and purification of recombinant human histones. Methods, 33 (1), 3–11 (2004). doi: 10.1016/j.ymeth.2003.10.024
- Luger K., Rechsteiner T. J., and Richmond T. J. Preparation of nucleosome core particle from recombinant histones. Methods Enzymol., 304, 3–19 (1999). doi: 10.1016/s0076-6879(99)04003-3
- Cheung W. L., Ajiro K., Samejima K., Kloc M., Cheung P., Mizzen C. A., Beeser A., Etkin L. D., Chernoff J., Earnshaw W. C., and Allis C. D. Apoptotic phosphorylation of histone H2B is mediated by mammalian sterile twenty kinase. Cell, 113 (4), 507–517 (2003). doi: 10.1016/s0092-8674(03)00355-6
- Nusinow D. A., Sharp J. A., Morris A., Salas S., Plath K., and Panning B. The histone domain of macroH2A1 contains several dispersed elements that are each sufficient to direct enrichment on the inactive X chromosome. J. Mol. Biol., 371 (1), 11–18 (2007). doi: 10.1016/j.jmb.2007.05.063
- Shinagawa T., Takagi T., Tsukamoto D., Tomaru C., Huynh L. M., Sivaraman P., Kumarevel T., Inoue K., Nakato R., Katou Y., Sado T., Takahashi S., Ogura A., Shirahige K., and Ishii S. Histone variants enriched in oocytes enhance reprogramming to induced pluripotent stem cells. Cell Stem Cell, 14 (2), 217–227 (2014). doi: 10.1016/j.stem.2013.12.015
- Urahama T., Horikoshi N., Osakabe A., Tachiwana H., and Kurumizaka H. Structure of human nucleosome containing the testis-specific histone variant TSH2B. Acta Crystallogr. F Struct. Biol. Commun., 70 (Pt 4), 444–449 (2014). doi: 10.1107/S2053230X14004695
- Thakar A., Gupta P., Ishibashi T., Finn R., Silva-Moreno B., Uchiyama S., Fukui K., Tomschik M., Ausio J., and Zlatanova J. H2A.Z and H3.3 histone variants affect nucleosome structure: biochemical and biophysical studies. Biochemistry, 48 (46), 10852–10857 (2009). doi: 10.1021/bi901129e
- Kosarim N. A., Fedulova A. S., Shariafetdinova A. S., Armeev G. A., and Shaytan A. K. Molecular Dynamics Simulations of Nucleosomes Containing Histone Variant H2A.J. Int. J. Mol. Sci., 25 (22), 12136 (2024). doi: 10.3390/ijms252212136
Arquivos suplementares

