Features of the Effects of Exposure to 90–170 MeV Proton Radiation on the Blood-Forming Organs in Mice under Total Irradiation with Proton Pencil Scanning Beam Depending on the Linear Energy Transfer of Particles

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The effects on induction of cytogenetic damage to mouse bone marrow, generation of reactive oxygen species by whole blood cells, and on the thymus and spleen from exposure of mice to total-body proton radiation before and at the Bragg peak with a dose deposition of 0.1–1.5 Gy were investigated depending on the linear rate of energy loss. It was found that the level of polychromatophilic erythrocytes with micronuclei at all doses of proton radiation at the Bragg peak with the linear energy transfer 2.5 keV/μm was close to that of polychromatophilic erythrocytes with micronuclei for the corresponding doses of X-ray radiation with the linear rate of energy loss 2.0 keV/μm, and the level of cytogenetic damage induced by exposure to proton radiation up to the Bragg peak with the linear energy transfer 0.7 keV/μm was significantly lower. The coefficient of the relative biological effectiveness of proton irradiation calculated from the linear energy transfer by estimating micronuclei frequency at and before the Bragg peak was 1.15 and 0.63, respectively. Organ-specific differences in the patterns of pathophysiological effects on the thymus, spleen of mice and the state of the antioxidant system of blood cells depending on the linear energy transfer of protons were revealed by varying radiation doses.

Sobre autores

O. Rozanova

Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences

Email: rozanova.iteb@gmail.com
Pushchino, Russia

T. Belyakova

Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences

Pushchino, Russia

E. Smirnova

Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences

Pushchino, Russia

S. Sorokina

Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences

Pushchino, Russia

A. Dyukina

Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences

Pushchino, Russia

A. Shemyakov

Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences; Branch “Physical-Technical Center” of P.N. Lebedev Physical Institute, Russian Academy of Sciences

Pushchino, Russia; Protvino, Russia

N. Strelnikova

Branch “Physical-Technical Center” of P.N. Lebedev Physical Institute, Russian Academy of Sciences

Protvino, Russia

Bibliografia

  1. Wu Y. Y. and Fan K. H. Proton therapy for prostate cancer: current state and future perspectives. Br. J. Radiol., 95 (1131), 20210670 (2022). doi: 10.1259/bjr.20210670
  2. Mutter R. W., Choi J. I., Jimenez R. B., Kirova Y. M., Fagundes M., Haffty B. G., Amos R. A., Bradley J. A., Chen P. Y., Ding X., Carr A. M., Taylor L. M., Pankuch M., Vega R. B. M., Ho A. Y., Nystrom P. W., McGee L. A., Urbanic J. J., Cahlon O., Maduro J. H., and MacDonald S. M. Proton therapy for breast cancer: a consensus statement from the particle therapy cooperative group breast cancer subcommittee. Int. J. Radiat. Oncol. Biol. Phys., 111 (2), 337–359 (2021). doi: 10.1016/j.ijrobp.2021.05.110
  3. Gordon K. B., Smyk D. I., and Gulidov I. A. Proton therapy in head and neck cancer treatment: state of the problem and development prospects (review). Sovrem. Tekhnologii Med., 13 (4), 70–80 (2021). doi: 10.17691/stm2021.13.4.08
  4. Schippers J. M. and Lomax A. J. Emerging technologies in proton therapy. Acta Oncol., 50 (6), 838–850 (2011). doi: 10.3109/0284186X.2011.582513
  5. Mohan R. and Grosshans D. Proton therapy – present and future. Adv. Drug Deliv. Rev., 109, 26–44 (2017). doi: 10.1016/j.addr.2016.11.006
  6. Rithidech K. N., Honikel L. M., Reungpatthanaphong P., Tungjai M., Golightly M., and Whorton E. B. Effects of 100MeV protons delivered at 0.5 or 1cGy/min on the in vivo induction of early and delayed chromosomal damage. Mutat. Res., 756 (1–2), 127–140 (2013). doi: 10.1016/j.mrgentox.2013.06.001
  7. Ушаков И. Б. Космос. Радиация. Человек (Радиационный барьер в межпланетных полетах) (Научная книга, М., 2021).
  8. Chang J., Feng W., Wang Y., Luo Y., Allen A. R., Koturbash I., Turner J., Stewart B., Raber J., Hauer-Jensen M., Zhou D., and Shao L. Whole-body proton irradiation causes long-term damage to hematopoietic stem cells in mice. Radiation research, 183 (2), 240–248 (2015). doi: 10.1667/RR13887.1
  9. Skelly A., Brodt E., and Schwartz N. Proton beam therapy – re-review. Final evidence report (WA – Health Technology Assessment, 2019), p. 301.
  10. Sorensen B. S., Pawelke J., Bauer J., Burnet N. G., Dasu A., Hoyer M., Karger C. P., Krause M., SchwarzM., Underwood T. S. A., Wagenaar D., Whitfield G. A., and Luhr A. Does the uncertainty in relative biological effectiveness affect patient treatment in proton therapy? Radiotherapy and Oncology, 163, 177–184 (2021). doi: 10.1016/j.radonc.2021.08.016
  11. Paganetti H., Blakely E., Carabe-Fernandez A., Carlson D. J., Das I. J., Dong L., Grosshans D., Held K. D., Mohan R., Moiseenko V., Niemierko A., Stewart R. D., and Willers H. Report of the AAPM TG-256 on the relative biological effectiveness of proton beams in radiation therapy. Med. Physics, 46 (3), 53–78 (2019). doi: 10.1002/mp.13390
  12. Luhr A., von Neubeck C., Krause M., and Troost E. G. C. Relative biological effectiveness in proton beam therapy – Current knowledge and future challenges. Clin. Translat. Rad. Oncol., 9, 35–41 (2018). doi: 10.1016/j.ctro.2018.01.006
  13. Bao C., Sun Y., Dong Y., Le Z., Lin L. C., Kong L., and Lu J. J. The relative biological effectiveness of proton and carbon ion beams in photon-sensitive and resistant nasopharyngeal cancer cells. Translat. Cancer Res., 7 (1), 170–179 (2018). doi: 10.21037/tcr.2018.01.25
  14. Deycmar S., Faccin E., Kazimova T., Knobel P. A., Telarovic I., Tschanz F., Waller V., Winkler R., Yong C., Zingariello D., and Pruschy M. The relative biological effectiveness of proton irradiation in dependence of DNA damage repair. Br. J. Radiol., 93 (1107), 20190494 (2020). doi: 10.1259/bjr.20190494
  15. Tang F. R. and Loke W. K. Molecular mechanisms of low dose ionizing radiation-induced hormesis, adaptive responses, radioresistance, bystander effects, and genomic instability. Int. J. Radiat. Biol., 91 (1), 13–27 (2015). doi: 10.3109/09553002.2014.937510
  16. Finnberg N., Wambi C., Ware J. H., Kennedy A. R., and El-Deiry W. S. Gamma-radiation triggers a unique gene expression profile associated with cell death compared to proton radiation in mice in vivo. Cancer Biol. Therapy, 7 (12), 2023–2033 (2008). doi: 10.4161/cbt.7.12.7417
  17. Smith J. A., van den Broek F. A., Martorell J. C., Hackbarth H., Ruksenas O., and Zeller W. FELASA working group on ethical evaluation of animal experiments, principles and practice in ethical review of animal experiments across Europe: summary of the report of a FELASA working group on ethical evaluation of animal experiments. Lab. Animals, 41 (2), 143–160 (2007).
  18. Директива 2010/63/eu Eвpопейcкого парламента и Совета Eвpопейcкого союза от 22 сентября 2010 г. по охране животных, иcпользуемыx в научныx целяx (Rus-LASA «НП объединение специалистов по работе с лабораторными животными», рабочая группа по переводам и изданию тематической литературы, CПб, 2012).
  19. Zaichkina S. I., Kondakova N. V., Rozanova O. M., Aptikaeva G. F., Akhmadieva A. Kh., Sakharova V. V., Ripa N. V., Kolkhir V. K., Sokol’skaya T. A., Rebrov L. B., and Bykov V. A. Radioprotector properties of biologically active substances in the range of medium and small radiation doses studied by means of the cytogenetic micronuclear test. Pharmaceut. Chem. J., 38, 405–410 (2004). doi: 10.1023/B: PHAC.0000048900.86428.70
  20. Schmid W. The micronucleus test. Mutat. Res., 31 (1), 9–15 (1975). doi: 10.1016/0165-1161(75)90058-8
  21. Zaichkina S. I., Klokov D. Iu., Rozanova O. M., Aptikaeva G. F., and Akhmadieva A. Kh. Deĭstvie malykh doz gamma-radiatsii na tsitogeneticheskoe povrezhdenie v polikhromatofil'nykh eritrotsitakh kostnogo mozga mysheĭ in vivo [Action of low doses of gamma-radiation on cytogenetic damage in polychromatophilic erythrocytes of bone marrow in mice in vivo]. Genetika, 34 (7), 1013–1016 (1998).
  22. Osipov A. N., Klokov D. Y., Elakov A. L., Rozanova O. M., Zaichkina S. I., Aptikaeva G. F., and Akhmadieva A. Kh. Comparison in vivo study of genotoxic action of high- versus very low dose-rate gamma-irradiation. Nonlinearity in biology, toxicology, medicine, 2 (3), 223–232 (2004). doi: 10.1080/15401420490507521
  23. Cherubini R., De Nadal V., and Gerardi S. Hyper-radiosensitivity and induced radioresistance and bystander effects in rodent and human cells as a function of radiation quality. Radiat. Prot. Dosimetry, 166 (1–4), 137–141 (2015). doi: 10.1093/rpd/ncv294
  24. Heuskin A. C., Michiels C., and Lucas S. Low dose hypersensitivity following in vitro cell irradiation with charged particles: Is the mechanism the same as with Xray radiation? Int. J. Radiat. Biol., 90 (1), 81–89 (2014). doi: 10.3109/09553002.2013.835503
  25. Tommansino F. and Durante M. Proton radiobiology. Cancers, 7, 353–381 (2015).
  26. Calugaru V., Nauraye C., Noel G., Giocanti N., Favaudon V., and Megnin-Chanet F. Radiobiological characterization of two therapeutic proton beams with different initial energy spectra used at the Institut Curie Proton Therapy Center in Orsay. Int. J. Radiat. Oncol. Biol. Phys., 81 (4), 1136–1143 (2011). doi: 10.1016/j.ijrobp.2010.09.003
  27. Koryakina E., Troshina M., Potetnya V., Koryakin S., Baykuzina R., and Golovanova O. Biological efficiency of a scanning proton beam under different irradiation modes in vitro. In: Abstr. Book of Eighth Int. Conf. on Radiation in Various Fields of Research (Virtual conference, 2020), p. 125.
  28. Spadinger I. and Palcic B. The relative biological effectiveness of 60Co gamma-rays, 55 kVp X-rays, 250 kVp X-rays, and 11 MeV electrons at low doses. Int. J. Radiat. Biol., 61 (3), 345–353 (1992). doi: 10.1080/09553009214551031
  29. Иванов А. А., Бычкова Т. М., Никитенко О. В. и Ушаков И. Б. Радиобиологические эффекты протонов. Медицинская радиология и радиационная безопасность, 64 (3), 19–31 (2019). doi: 10.12737/article_5cf2306a3b26d6.36140627
  30. Balakin V. E., Rozanova O. M., Smirnova E. N., Belyakova T. A., Shemyakov A. E., and Strelnikova N. S. Assessment of the relative biological efficiency of pencil beam scanning of protons in mice in vivo. Dokl. Biochem. Biophys., 499 (1), 215–219 (2021). doi: 10.1134/S1607672921040037
  31. Биофизические основы действия космической радиации и излучений ускорителей, под ред. Жуковской Н. Е. и Черножуковой Е. М. (Проблемы космической биологии, т. 60) (Наука, Л., 1989).
  32. Бекетов Е. Е., Исаева Е. В., Наседкина Н. В., Соловьев А. Н., Голованова О. Ю., Ульяненко Л. Н., Малахов Е. П., Кисель А. А., Ульяненко С. Е., Шегай П. В., Иванов С. А. и Каприн А. Д. Равномерность биологической дозы в распределенном пике Брэгга терапевтической установки со сканирующим пучком протонов. Вопросы онкологии, 65 (4), 532–536 (2019).
  33. Feola J. M., Hwang H. N., Beach J. L., and Maruyam Y. Relative biological effectiveness of 252Cf radiation as estimated by thymus weight loss. J. Radiat. Res., 26 (1), 140–149 (1985). doi: 10.1269/jrr.26.140
  34. Gridley D. S., Pecaut M. J., and Nelson G. A. Totalbody irradiation with high-LET particles: acute and chronic effects on the immune system. Am. J. Physiol. Regul. Integr. Comp. Physiol., 282 (3), 677–688 (2002). doi: 10.1152/ajpregu.00435.2001
  35. Шалгимбаева Г. С., Жетписбаева Х. С., Адрисова К. С., Жетписбаев Б. А. и Куанышева А. Г. Алимбаева А. А. Отдаленные эффекты малой дозы гамма-излучения на лимфоидные органы иммуногенеза. Наука и здравоохранение, 4, 46-48 (2014).
  36. Giedzinski E., Rola R., Fike J. R., and Limoli C. L. Efficient production of reactive oxygen species in neural precursor cells afterL exposure to 250 MeV protons. Radiat. Res., 164 (4, Pt 2), 540–544 (2005). doi: 10.1667/rr3369.1
  37. Narang H., Kumar A., Bhat N., Pandey B. N., and Ghosh A. Effect of proton and gamma irradiation on human lung carcinoma cells: Gene expression, cell cycle, cell death, epithelial-mesenchymal transition and cancer-stem cell trait as biological end points. Mutation Res., 780, 35–46 (2015). doi: 10.1016/j.mrfmmm.2015.07.006

Declaração de direitos autorais © Russian Academy of Sciences, 2024

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies